华南农业大学杨卓鸿教授团队 Prog. Org. Coat.:香兰素和有机硅改性的氧化石墨烯制备乙烯基酯复合防腐涂料
2023-07-17 来源:高分子科技
随着全球经济快速发展和陆地资源过度开采,人们开始将目光转向资源丰富的海洋。金属设备在海洋环境中的水、氧和卤化物等腐蚀介质的作用下会发生腐蚀现象,导致钢材性能失效,缩短金属使用寿命,甚至引发爆炸等灾难事故。将防腐涂料涂覆在金属表面形成保护层是目前一种最常用、最直接和最经济的有效手段,每年可为国家减少15%-35%的经济损失。环氧乙烯基酯树脂兼具环氧树脂和不饱和聚酯树脂的优点,凭其高强度、高耐腐蚀和耐热等优异性能在众多防腐涂料中脱颖而出,被广泛用于水产养殖、船舶制造和航空航天等防腐领域。但是,乙烯基酯树脂分子中含有易发生水解的酯基,长期使用会使材料结构发生变化。另外,树脂在成膜过程中由于溶剂的蒸发,易产生微孔和微裂纹等缺陷,导致其长期防腐能力不足,限制了在海洋防腐领域的应用。
图1(1)所示,利用丙烯酸对环氧树脂E44进行开环反应制备了主体树脂D-E44;在图1(2-3)中,通过酯化反应,利用羟基有机硅和丙烯酸酐,生物质材料香兰素和苯甲酰氯的反应制得了双键封端的有机硅单体AA-PDMS和含有活性酯的新型单体VBC。在图2中,通过插入反应和D-A反应将VBC和AA-PDMS对GO进行两步化学改性,成功制备了在树脂中具有良好分散性和相容性的改性GO交联剂(APGO),最后通过APGO与D-E44进行不同比例的复配,在热聚合作用下制备了多种环氧乙烯基酯树脂复合涂料。通过红外和核磁测试证明了D-E44,AA-PDMS和VBC单体的成功制备(图3(1-2))以及通过对改性GO的表征(图3(3-4),图4和图5)证明了交联剂APGO的成功制备。
图1. 环氧乙烯基酯树脂(1)、双键封端的有机硅(2)和活性酯单体(3)的制备
图2. VBC和AA-PDMS对GO的改性(1-2)和复合涂料的制备(3)
图3. D-E44,AA-PDMS,VBC的FTIR(1)和1H-NMR(2)图;G,GO,HGO,APGO 的FTIR(3)和XRD(4)图
图4. G,GO,HGO,APGO的Raman(1),XPS(2), 元素含量(3)和TGA (4)图
图5. G (1),GO (2),HGO (3)和APGO (4)的TEM图
将制备的涂层浸泡在3.5wt%的盐水中70天进行电化学测试,结果如图6-8所示。Bode图表明(图6),涂层经过70天的浸泡后,纯树脂APGO-0-DE涂层的阻抗模量(Zf = 0.01 Hz)由2.28 × 1010 Ω cm2降低到了2.43 × 108 Ω cm2。涂层中引入GO/APGO后,涂层的防腐性能得到了明显改善。当APGO的添加量为0.1wt%时,APGO-3-DE涂层的防腐性能最好,其在低频处的阻抗模量由开始的1.21 × 1011 Ω cm2仅降低到了2.23 × 1010 Ω cm2,比对照组高出两个数量级。在Bode-phase图中(图7),涂层经过70天的浸泡后,纯树脂APGO-0-DE涂层的相角由84.61°降到了76.47°,其相角在-45°处的频率表现为最大值,这表明其防腐性能得到了降低。加入GO/APGO的涂层在浸泡期间降低的幅度明显变小,它们的涂层在-45°处相角的频率较低,且在高频区域表现出较宽的平台。在Nyquist图中(图8)可以发现涂层在浸泡过程中,其阻抗弧的半径随着浸泡时间的延长在降低,这说明涂层在浸泡过程中防腐性能发生了变化,其中APGO-0-DE涂层的半径弧降低速率最大,并且始终低于其他复合涂层的。
图6. APGO-0-DE(1)、GO-1-DE(2)、APGO-1-DE(3)、APGO-2-DE(4)、APGO-3-DE(5)、APGO-4-DE(6)在3.5wt%的盐水中浸泡70天的Bode图
图7. APGO-0-DE(1)、GO-1-DE(2)、APGO-1-DE(3)、APGO-2-DE(4)、APGO-3-DE(5)、APGO-4-DE(6)在3.5wt%的盐水中浸泡70天的Bode-phase图
图8. APGO-0-DE(1)、GO-1-DE(2)、APGO-1-DE(3)、APGO-2-DE(4)、APGO-3-DE(5)、APGO-4-DE(6)在3.5wt%的盐水中浸泡70天的Nyquist图
通过综合对比得出结论,填料(GO/APGO)的加入有利于提高涂层的防腐性能,并且涂层的防腐性能与添加填料的含量密切相关,当APGO的添加量为0.1wt%时,涂层APGO-3-DE具有最佳的防腐性能,当添加量为0.2wt%时,由于填料的富集导致涂层的防腐性能得到降低,但依然高于纯树脂涂层的。另外,添加等量的APGO的涂层要优于GO的,这主要与APGO交联剂的加入增加了体系的交联密度相关。总之,该项工作不仅为改性GO提供了一种全新的方法和拓展了生物质材料在防腐领域的应用,还为制备应用于海洋领域的长效防腐复合涂料提供了实验借鉴。
原文链接: https://doi.org/10.1016/j.porgcoat.2023.107804
版权与免责声明:中国聚合物网原创文章。刊物或媒体如需转载,请联系邮箱:info@polymer.cn,并请注明出处。
(责任编辑:xu)
相关新闻
- 华南师范大学张振:纤维素纳米晶和氧化石墨烯共乳化Pickering乳液制备光热相变微胶囊用于太阳能和热能存储 2024-08-16
- 中北大学王智教授团队:基于粉煤灰基沸石/还原氧化石墨烯/苯并噁嗪的有效散热防腐涂层 2024-08-19
- 北化贾晓龙教授、杨小平教授 Adv. Compos. Hybrid. Ma.:碳纤维复合材料新型耐高温界面相的构建方面取得新进展 2024-04-28
- “高性能环氧乙烯基酯树脂”荣获上海产学研合作优秀项目一等奖 2014-12-30
- 中科院石墨烯三维网络结构的制备及应用研究取得重要进展 2011-04-12
- 南京理工大学傅佳骏教授团队 Small 综述:受人体启发的仿生自修复材料 2024-11-08
- 华南农业大学杨卓鸿教授团队 CEJ:木质素和N掺杂单体改性的氧化石墨烯智能防腐涂层 2024-02-19