有机薄膜光伏,尤其是基于非富勒烯体系的薄膜光伏,是化学与材料科学领域的热点研究方向。新材料的开发与器件的优化,不断推动器件性能的发展,迄今已实现超过17%的能量转化效率,接近应用水平。中国在此研究领域已经走在了世界的最前列,国内多个课题组在有机太阳能电池的研究中取得了快速发展。
全聚合物体系因其溶液黏度高,机械性能好,结晶性较小分子弱等特点非常适用于印刷器件的制备。目前大多数的研究采用旋涂方法制备活性层薄膜,该过程在物理本质上极大地区别于工业印刷,尤其是在形貌控制及其对应的光电转化过程中,造成薄膜形貌与器件性能在本质上的区别,因此很难将旋涂工艺转移到工业应用上。
基于此,上海交通大学刘烽教授团队选用了当前高效的全聚合物体系(PTzBI-Si:N2200),采用狭缝涂覆的制备方法,通过加工溶剂的选择及不同的后处理方式(热退火、溶剂退火)将共混膜形貌锁定在合适的动力学路径中,并最终实现了11.76%的能量转换效率,这是目前全聚合物太阳能电池体系报导的最高效率。
图1. 不同加工溶剂和后处理方式的活性层形貌图(AFM、SNOM、TEM)
研究发现,聚合物材料在2-甲基四氢呋喃(MTHF)溶剂中的堆积性相比于氯苯中更好,同时这种在溶液中的聚集状态在可以很好的转移到薄膜中,并诱导形成多尺度相分离形貌(图1),最终获得高效率器件。这当中的关键在于相分离和结晶之间的平衡。合适的加工溶剂可以有效调控聚合物在溶液中的聚集,印刷成膜后,聚集态作为种子诱导聚合物结晶,最终形成了结晶纤维网络,并浸没在非晶态中。这种形貌有效提高了激子分离并实现高的载流子传输,提高了器件的短路电流和填充因子。同时,这种多尺度的相分离形貌还具有很好的稳定性。利用掠入射广角X射线散射(GIWAXS),共振软X射线散射(R-SoXS),透射电子显微镜(TEM),扫描近场光学显微镜(SNOM)和原位GIWAXS/GISAXS等手段,对BHJ薄膜的形貌及其形成过程进行了表征,建立了结构-性能的对应关系(图2、图3),深入理解活性层形貌结构与器件性能的构效关系,最终构筑高效率印刷薄膜器件。
图2. 纯膜及共混膜在不同加工条件下的GIWAXS图和加工条件与晶体尺寸、相分离尺度及器件参数的对应关系
图3. BHJ成膜过程的原位GIXD分析和形貌形成过程示意图
上述成果发表在Advanced Materials上。论文的第一作者为上海交通大学化学化工学院博士后朱磊,通讯作者为刘烽教授。
- 哈工大何思斯/浙大范修林 Nature子刊:未来电池新方向 - 绿色环保的柔性全聚合物水系电池,让能源“用得久”、设备“穿得起” 2024-12-16
- 同济大学郑威、南昆大宋平安 Adv. Mater. :由贻贝启发、自愈合、高效的全聚合物防火涂料 2024-09-02
- 香港科技大学颜河、于涵 AFM:聚合物受体中的氟化+硒化协同作用增强近红外光子捕获助力高效半透明全聚合物太阳能电池 2024-04-29
- 桂林电子科技大学蔡平、华南理工大学薛启帆 AFM:溶液加工的厚度不敏感阴极中间层在高效有机太阳能电池的研究进展 2025-01-08
- 郑州大学孙晨凯课题组 ACS Nano:低成本聚合物给体PTQ16-10实现19.52%效率的有机太阳能电池 2024-12-31
- 武汉理工大学王涛 JACS:聚合物纳米纤维几何形态调控 - 实现20.1%高效率有机太阳能电池 2024-12-04