近年来,兼具高弹性、高强度、高韧性与优异离子导电性的材料在可穿戴设备和拉伸电池领域备受期待。然而,要同时实现这些性能的材料设计仍面临巨大挑战。巴黎高等物理化工学院(ESPCI Paris) Costantino Creton教授团队在Nature Communications上发表了一项突破性研究,提出了一种基于多网络弹性体(MNE)架构的新型离子导电弹性体(ICEs)。这一设计实现了机械性能(高刚度、可逆弹性、断裂抗性)与离子导电性的完美结合,为柔性电子设备和储能材料开辟了新的可能性。
研究背景与方法
为解决传统离子导电弹性体(ICEs)在机械性能与离子导电性之间的权衡问题,作者提出了一种全新的多网络弹性体(MNE)设计策略。通过引入低玻璃化转变温度(Tg)的MEA单体、高Tg的IBA单体,以及锂盐LiTFSI,结合预拉伸网络和牺牲键的架构,成功实现了性能的多重提升。
- 首先,通过紫外光聚合法合成了密集交联的填充网络(FNs),并引入锂盐提升导电性。
- 随后,填充网络被浸泡在包含MEA单体、锂盐和交联剂的前体溶液中,并在手套箱中平衡溶胀。
- 最终,通过紫外光聚合完成了预拉伸多网络ICEs的制备。
这种方法结合了牺牲键的强度提升机制与预拉伸网络的弹性增强特点,同时通过低Tg单体保证了高离子导电性。
图1:含不同预拉伸水平的ICEs的合成示意图
- 性能分析:MNE架构下的ICEs不仅表现出显著更高的断裂能和刚度,还同时实现了更高的离子导电性。
- 对比分析:与现有文献中报道的材料相比,本文提出的ICEs成功打破了导电性与机械性能之间的传统权衡问题。
图2:基于简单网络和预拉伸网络的ICEs性能对比
- 离子电导率与温度关系:材料遵循Vogel–Fulcher–Tammann (VFT)模型,离子电导率随着温度升高而显著增加。
- 强度与导电性协同优化:即使在高温条件下,ICEs仍保持了一定的机械性能,同时展现出优异的导电性。
图3:温度对离子电导率与力学性能的影响及协同优化
总结
该研究开发了一种基于多网络弹性体(MNE)架构的离子导电弹性体,通过低Tg单体MEA、高Tg单体IBA和锂盐LiTFSI的结合,验证了该方法在低Tg单体中的应用。材料在实现高杨氏模量、强度和韧性的同时,展现出良好的离子导电性(~10-6 S/cm)和抗疲劳性能,适合应用于可穿戴设备和生物电子设备。
本文由巴黎高等物理化工学院(ESPCI Paris)SIMM实验室的博士后布热比·依明担任第一作者,其导师Costantino Creton教授为通讯作者。布热比·依明博士多年以来专注于离子导电材料的研发,包括离子导电弹性体和离子液体凝胶,并在高分子材料领域积累了丰富的研究经验。
Costantino Creton教授是高分子力学领域的国际知名学者,现任ESPCI Paris的研究副校长,同时是SIMM实验室的核心成员。他的研究涵盖聚合物材料的粘附、断裂与变形机制,领导的团队多次发表高影响力学术成果,为该领域的基础与应用研究做出了卓越贡献。
此外,合作团队中的Armelle Ringuede教授是Chimie Paris Tech的一位资深科学家,专注于电化学基础研究,尤其是在功能性材料的电化学行为研究中拥有深厚的学术造诣。
- Chimie ParisTech的博士后、电化学方向博士Simon Hubert
- SIMM实验室的博士后、有机化学博士Alex Cartier
- SIMM实验室的工程师Bruno Bresson
这项研究汇聚了多位跨机构、多学科领域的科学家,充分展现了团队在高分子力学和离子导电材料领域的创新实力与合作深度。
原文链接:https://doi.org/10.1038/s41467-024-55472-8
- 2025年世界弹性体科技与工程论坛暨中国橡胶基础研究研讨会将于2025年9月15日在上海举办(第一轮通知) 2025-02-21
- 中国科大李木军团队 ACS Nano:复合冷场3D打印液晶弹性体实现近环境温度响应,智能手环精准监测心率! 2025-02-18
- 宾夕法尼亚大学杨澍教授团队 Sci. Adv.:液晶弹性体/锆钛酸铅柔性热释电能量收集器 2025-02-17
- 大连理工大学董旭峰教授团队 Small:面向柔性应变传感的强韧、抗冻、抗菌多重交联水凝胶 2025-02-11
- 南京林业大学陈楚楚 Green Chem.:受螃蟹蜕壳启发的超薄、强韧、透明水凝胶 2025-02-09
- 北航赵子龙教授、清华高华健院士团队 Acta Biomater.:揭示生物互锁界面的强韧化与优化机理 2025-01-13
- 无线植入设备实现脑肿瘤精准治疗 - 中山大学徐炳哲团队突破胶质瘤治疗难题 2024-12-15