聚合物分散液晶(PDLC)是一种液晶以微滴形状分散在连续聚合物基体中的复合薄膜。在零场条件下,液晶分子无规取向,由于液晶微滴与聚合物基体之间的折射率不同,薄膜呈现不透明状态。当施加外部电场时,液晶分子重新排列与电场力方向一致,此时聚合物与液晶微滴折射率相匹配,薄膜呈现透明状态。与传统的电致变色和热致变色智能窗相比,PDLC在光学领域具有广阔的应用前景。然而,它们的应用受到一些缺点的限制,比如高驱动电压、低对比度和热稳定性差,尤其是高工作电压,是研究人员一直在努力解决的问题。
近日,北京科技大学杨槐/于美娜团队等人通过将高清亮点液晶单体引入PDLC体系中,开发设计了一种可在较高温度下仍保持着低电压、高对比度和快速响应的PDLC薄膜。该薄膜在智能显示领域和智能窗领域有着良好的应用前景。相关工作以“An intelligent electrochromic film with passive radiative cooling and synergistic solar light control capabilities for display and smart windows”为题发表于Journal of materials chemistry A, 北京科技大学/北京大学杨槐教授、于美娜副研究员、王茜特聘副研究员为共同通讯作者,北京科技大学新材料技术研究院博士生张作为为文章第一作者。
Figure 1. Schematic diagram of the preparing process and working mechanism of PDLC film.
Figure 2. (a) SEM micrographs of polymer network in samples B0-B4; (b) The voltage-dependent transmittance curves; (c) Vsat and CR of B0-B5 samples; (d) Vth and Vsat of B0-B5 samples; (e) TR and TD of samples B0-B5; (f) the corresponding ordinary refractive indices (no) of LCs in different samples; (g) Variation of Ton and Toff of samples;
Fig 3. (a-f) Reflection notch dispersion image of the five samples recorded at different temperatures, in which the transmittance is represented by the color; (g-i) (g) The Vsat; (h) CR; and (i) Response time of B3 sample at different temperatures.
Fig 4. (a-b) Patterned PDLC based on different CRs in the on and off states; (c-d) Mechanism of the image-imbedded PDLC displays with the demonstrated photo images of word “B” and “Four-leaf clover” at several driving voltages; (e) transmittance images of the film at different voltages; (f) UV-Vis-NIR spectra at different voltages (g) reflection spectra of film at off-state and on-state; (h) the response time curve (sample B3); (i) the transmittance of the spectra of the initial film and the film after 100 cycles;
Fig 5. (a) Solar transmittance and infrared emissivity curves; (b) Absorbance spectrum of PDLC film with ATR-FTIR spectroscopy; (c) the temperature variation of the films under simulated sun light; (d) Temperature of thin film under different voltages; (e) calculated net cooling power during the nighttime of PDLC film; (f) calculated net cooling power during the daytime of PDLC film; (g) variation of integral luminous transmittance in 380-780 nm (Tlum) and solar transmittance in 380-2500 nm (Tsol) under different voltages; (h) Response time and ΔTlum of PDLC film and EC switchable materials to compare their dynamic modulation capability.
原文链接:https://doi.org/10.1039/d4ta04621h
- 天津大学浙江研究院“高分子复合材料中心”(宁波)诚聘英才 2024-09-23
- 湘潭大学蒋凯、武汉大学/北京大学张平文、麦克马斯特大学史安昌 Macromolecules:T型液晶分子体系自组装相行为 2024-03-18
- 河北工业大学朱吉亮团队 Small:迈克尔加成诱导自组装构筑机械变色蓝相液晶薄膜 2024-01-29
- 南邮黄维院士团队陶冶教授、陈润锋教授《Appl. Phys. Rev.》:通过主客体掺杂实现低电压驱动的有机电致长余辉发光二极管 2022-10-01
- 中国科大李良彬教授团队 Macromolecules:玻璃态聚合物在宽温度范围内的过老化 2024-10-29
- 东华大学武培怡/焦玉聪团队 EES: Zr2+交联凝胶电解质实现无枝晶锌金属负极 2023-08-19
- 西南交大崔树勋教授课题组 Macromolecules:高分子在低温下的单链弹性 2023-04-14