搜索:  
西工大顾军渭教授《Sci. Bull.》:高强度、超疏水聚对苯撑苯并二噁唑纳米透波复合纸
2022-10-25  来源:高分子科技

  聚对苯撑苯并二噁唑(PBO)纤维被誉为21世纪的超级纤维,其衍生的PBO纳米纤维(PNF)被视为制备高性能透波复合纸的理想原材料,在航空/航天、交通运输和5G通讯等领域具有广阔的应用前景。然而,PNF透波复合纸内的纳米纤维间的相互作用力较低,且PNF表面疏水性较差使其难以服役暴雨、冰雪、盐雾等恶劣自然环境。


  西北工业大学化学与化工学院顾军渭教授结构/功能高分子复合材料SFPC)课题组团队基于铁离子(Fe3+)与PNF表面N原子的配位作用在PNF间构建金属配位键获得预成型的三维互联纳米纤维网络,并通过溶胶-凝胶-薄膜转化法制备PNF纸;PNF纸表面喷涂聚四氟乙烯(PTFE)颗粒/P(S-co-BCB-co-MMA)混合溶液,经热交联制备双层结构PTFE-P/PNF纳米复合纸。


  基于金属配位键和氢键的双重作用,PTFE-P/PNF纳米复合纸具有极佳的综合性能。当PTFE/P(S-co-BCB-co-MMA)的质量分数为50 wt%时,PTFE-P/PNF-50/50纳米复合纸具有最佳的韧性(16.4 MJ/m3)、出色的拉伸强度(271.6 MPa)和优异的耐折叠性能;介电常数(ε)和介电损耗正切值(tanδ)分别为2.060.0133,基于麦克斯韦方程建立的双层板透波模型计算出的电磁波从PTFE-P/PNF-50/50纳米复合纸两侧入射的透波率分别为97.6%PNFs侧)和96.0%PTFE/P(S-co-BCB-co-MMA)侧)。此外,PTFE-P/PNF-50/50纳米复合纸的PTFE/P(S-co-BCB-co-MMA)侧具有优异的超疏水(与水的接触角为151o)和自清洁性能,且在强酸和强碱环境浸泡30天后仍具有稳定的超疏水性能。本工作研制的高强度、超疏水聚对苯撑苯并二噁唑纳米透波复合纸有望在航空/航天、交通运输和5G通讯的雷达天线罩、电磁窗等领域获得广泛的应用。 


Fig. 1. Double-layered PTFE-P/PNF nanocomposite paper with high tensile strength and wave-transparent coefficient, super-hydrophobicity. 


Fig. 2. Schematics of the Preparation for PTFE-P/PNF Nanocomposite Paper, and Exfoliation of PBO Fibers into PNFs. Schematics of the preparation for PTFE-P/PNF nanocomposite paper and exfoliation of PBO fibers into PNFs. Schematic diagram of the preparation for PTFE-P/PNF nanocomposite paper (a); process of converting PBO fibers into PNF/Fe2(SO4)3 sol (b); TEM images of PNF (c, d); optical photographs of PNF gel with certain flexibility (e); SEM image showing the inside of the PNF gel (f); schematic diagram of the interaction mechanism between PNFs (g). 


Fig. 3. Morphology of PNF, P/PNF and PTFE-P/PNF-50/50 nanocomposite paper. Optical photographs of PNF (a), P/PNF (d), and PTFE-P/PNF-50/50 nanocomposite (e) paper; SEM images of PNF (b), P/PNF (e), and PTFE-P/PNF-50/50 nanocomposite (h) paper; SEM images of fracture surfaces for PNF (c), P/PNF (f), and PTFE-P/PNF-50/50 nanocomposite (i) paper. 



Fig. 4. Mechanical properties and folding resistance of PTFE-P/PNF-50/50 nanocomposite paper. Optical photographs of the PTFE-P/PNF-50/50 nanocomposite paper possessing ultraflexibility and withstanding a weight of 500 g (a); tensile stress-strain curves (b), tensile strength (c), modulus (d), and toughness (e) of the PNF, P/PNF and PTFE-P/PNF nanocomposite paper; tensile strength and toughness retention of the PTFE-P/PNF-50/50 nanocomposite paper after repetitive folding (f); schematic diagram of the mechanism of interactions between the PTFE/P(S-co-BCB-co-MMA) and the PNF paper for fabricating the PTFE-P/PNF nanocomposite paper (g); optical photographs of the PTFE-P/PNF-50/50 nanocomposite paper being continuously folded and unfolded, showing no breakage (h). 


Fig. 5. Dielectric and wave-transparent performances of the PTFE–P/PNF nanocomposite paper. Dielectric constant ε (a), dielectric loss tangent tanδ (b), and wave-transparent coefficients |T|2 of the wave-transparent model for a single-layer dielectric (c) of the PNF, P/PNF, and PTFE-P/PNF nanocomposite paper; wave-transparent model of a single-layer dielectric (d); diagram of electromagnetic wave transmission (e); wave-transparent model of a double-layered dielectric (f,g); |T|2 values of the wave-transparent model for a double-layered dielectric with the incident surface being the PNF paper (h) and PTFE/P(S-co-BCB-co-MMA) layer (i). 


Fig. 6. Hydrophobicity and self-cleaning properties of PTFE-P/PNF nanocomposite paper. Contact angles and AFM images of distilled water with PNF (a, a’), P/PNF (b, b’), and PTFE-P/PNF nanocomposite (c-f, c’-f’) paper; optical photographs of different liquids on the surface of the PNF paper (g) and PTFE-P/PNF-50/50 nanocomposite paper (h); representative contact process of a water droplet (5 μL) on the surface of the PTFE-P/PNF-50/50 nanocomposite paper with a sliding angle of about 11o (i); self-cleaning process of the PNF paper (j), and the PTFE-P/PNF-50/50 nanocomposite paper (k) with dust as a mode of contaminant.


  本工作近期以“High-strength super-hydrophobic double-layered PBO nanofiber-polytetrafluoroethylene nanocomposite paper for high-performance wave-transparent applications”为题发表于Science Bulletin2022, 10.1016/j.scib.2022.10.011)上。第一作者为西北工业大学化学与化工学院唐林博士生,通讯作者为西北工业大学化学与化工学院顾军渭教授和南洋理工大学周琨教授。本研究工作得到了技术领域基金项目、凝固技术国家重点实验室(西北工业大学)开放课题(SKLSP202103)、高分子电磁功能材料陕西省三秦学者创新团队以及2021年度博士论文创新基金(CX2021036)的资助和支持。


  论文信息:Lin Tang, Yusheng Tang, Junliang Zhang, Yuhan Lin, Jie Kong, Kun Zhou* and Junwei Gu*. High-strength super-hydrophobic double-layered PBO nanofiber-polytetrafluoroethylene nanocomposite paper for high-performance wave-transparent applications. Science Bulletin, 2022, 10.1016/j.scib.2022.10.011.

  原文链接https://doi.org/10.1016/j.scib.2022.10.011


作者简介: 

  顾军渭,西北工业大学化学与化工学院教授、博导,陕西省杰出青年科学基金获得者、第四届中国复合材料学会青年科学家奖获得者。当选英国皇家化学会Fellow,英国皇家航空学会Fellow;入选科睿唯安全球“高被引科学家”、爱思唯尔“中国高被引学者”。任陕西省高分子科学与技术重点实验室副主任、中国复合材料学会导热复合材料专业委员会常务副主任。主要从事功能高分子复合材料和纤维增强先进树脂基复合材料的设计制备及加工研究。获2021年度中国复合材料学会科学技术奖二等奖(1/8)、2020年度高等学校科学研究优秀成果奖(科学技术)技术发明二等奖(2/6),2021中国化学会高分子创新论文奖等。主持国家自然科学基金联合基金重点项目,XXX技术基础重点项目、陕西省杰出青年科学基金等省部级及以上项目20项。以第一和/或通讯作者在Adv Funct Mater, Angew Chem Int Edit, Compos Sci TechnolMacromolecules等期刊发表高水平SCI论文150余篇。4篇论文入选2018~2020年“中国百篇最具影响国际学术论文” 、1篇论文入选第七届中国科协优秀科技论文、1篇论文入选“领跑者5000-中国精品科技期刊顶尖学术论文”。主/参编Elsevier、Wiley出版社专著4部,授权中国/美国发明专利20余件。任Nano-Micro Lett、J Mater Sci Technol、Compos Sci Technol、Natl Sci Rev等期刊副主编或编委。

版权与免责声明:中国聚合物网原创文章。刊物或媒体如需转载,请联系邮箱:info@polymer.cn,并请注明出处。
(责任编辑:xu)
】【打印】【关闭

诚邀关注高分子科技

更多>>最新资讯
更多>>科教新闻