长期以来,人们已经掌握了训练材料的技术,以提高其机械性能。在可训练的各种材料中,水凝胶因其在众多工程和生物学的应用中受到了高度关注。尽管在水凝胶训练方面有许多创新,但它们在工业应用方面仍远远不能令人满意。首先,目前大多数训练方法缺乏可逆性,可能对环境造成压力。其次,困难和耗时的培训过程往往导致制造的复杂性和困难。此外,训练步骤往往发生在类固体水凝胶的成型之后,因此使制造过程复杂化。
制造具有可编程和可逆力学性能的水凝胶对实际应用至关重要,最近,中山大学报告了一种便于制造的、具有可逆热训练特性的韧性水凝胶训练策略。在这项工作中,作者以含有可溶性半晶聚乙烯醇和结晶性亲水聚合物的水凝胶前体溶液为例开发了一种简单而有效的策略:在不同的环境中加热训练水凝胶。通过比较,未经过训练的水凝胶的杨氏模量仅为1.2 kPa,比经过训练的水凝胶的杨氏模量低2个数量级以上。通过比较拉伸功和断裂应力可以观察到类似的对比,其中热训练后的凝胶显示了超过100倍的增加。该策略的关键是微妙地调节晶体域的形成,从而可逆地将材料从液体切换到固体,或从软到硬,这赋予了凝胶令人满意的加工性能。训练温度、时间等多种因素可以有效调节训练效果,使水凝胶具有高度可编程的机械性能。在经过另一个水中加热的训练过程后,结晶畴很容易被破坏,这赋予了材料良好的可回收性。结合这些优点,该策略很好地适用于各种生产水凝胶的加工工艺,使凝胶具有良好的应用前景,如海洋防污水凝胶涂层等。
图1. (a)水凝胶在水中(左)和空气中(右)加热训练的可逆热训练示意图;(b)PVOH-PAAM(聚乙烯醇-聚丙烯酰胺)水凝胶在训练前后的单轴拉伸应力-应变曲线图、(c)相应的力学参数(***p < 0.001)以及(d)XRD谱图;(e)PVOH-PAAM经过在空气后再在水中训练的杨氏模量循环图。
图3. (a)水凝胶涂层的可回收制造示意图。PVOH-PVP(聚乙烯醇-聚吡咯烷酮)水凝胶的照片在每一步的旁边。(b) PVOH与不同非结晶亲水性聚合物合成的水凝胶的单轴拉伸应力-应变曲线。(c)环氧粘合PVOH-PVP和PVOH-PSPP(聚乙烯醇-聚磺基甜菜碱)水凝胶的搭接剪切测试曲线和(d)粘接强度。(e-f)用大肠杆菌培养48小时后玻璃片样品和PVOH-PSPP样品的显微镜照片。(g)大肠杆菌培养48 h后,环氧- PVOH-PSPP水凝胶的表面大肠杆菌覆盖率(***p < 0.001)。
全文链接如下:https://doi.org/10.1002/admt.202201346
- 吉林大学孙俊奇教授课题组《Adv. Mater.》:可在极寒环境中保持超高强度与韧性和优异抗冲击性能的可逆交联聚氨酯-脲塑料 2025-07-17
- 华南理工大学张广照、常州大学杨宏军 Adv. Mater.:兼具高发光效率与超凡韧性的室温磷光弹性体 2025-07-09
- 天工大张拥军/张岩团队 AFM:耐-100°C低温的高韧性高阻尼能力的共晶凝胶 2025-06-26
- 四川大学金勇教授团队 Nano Energy:具有可逆相变特性的太阳能驱动导电多功能水凝胶用于污水的净化与实时监测 2025-07-18
- 福州大学林腾飞副教授、福州大学附属省立医院郑晓春教授团队 Small:高亮度荧光仿生软体致动器 2025-07-18
- 兰州理工大学牛小慧/王坤杰团队 ACS Nano: 内含界面电场的手性多糖水凝胶材料 2025-07-14
- 芬兰坦佩雷大学郭洪爽博士 Adv. Mater.: 探索集体行为 - 从智能材料到仿生设计 2025-05-04