当前,石墨烯纤维材料作为制备柔性电子器件的一种优选材料得到广大科研人员的关注,在柔性储能器件和智能传感器件等领域有着巨大的应用潜力。但由于石墨烯片层严重堆叠及其自身天然的疏水性带来比表面积小、与电解液亲和性不佳等缺点,极大地限制了石墨烯优异的理论电化学性能在宏观材料中的发挥。
为此,东华大学朱美芳教授团队在前期的研究工作中开发了一种石墨烯溶液的非液晶纺丝方法,通过碱液调节溶液中石墨烯片层表面的带电性,使片层间产生强烈的静电排斥力,形成无序排列,规模化连续制备得到具有高电化学性能的多孔纯石墨烯纤维(Nano Energy, 2015, 15, 642),并取得了一系列的研究进展。该团队通过这种方法得到具有高强度、高亲水性及高电化学性能的聚乙烯醇/石墨烯杂化纤维(Journal of Power Sources, 2016, 319, 271)。他们进一步通过多组分杂化组装将带有赝电容特性的无机纳米粒子(例如MnO2、MoO3等)作为纳米活性组分,制备得到具有高电化学性能的杂化石墨烯纤维(Journal of Power Sources, 2016,306, 481; Carbon, 2017, 113, 151)。
近期,该团队在前期的工作基础上,利用纤维素纳米晶具有一维棒状刚性结构、表面富含亲水性基团的特点,将其作为纳米增强单元,通过上述纺丝方法,结合化学还原获得了多组分异质组装的rGO/CNC杂化纤维。研究发现,该策略获得的石墨烯杂化纤维具有多方面优势:第一,CNC的纳米棒状形态不仅能够与石墨烯片层形成插层结构,改善石墨烯纤维中石墨烯片层堆积严重的现象,而且还能抑制石墨烯片层在纤维成形过程中可能存在的弯曲和折叠,使其在纤维轴向上排列,从而形成有序的纳米孔道结构(如图1a所示),为电解质传输提供畅通无阻的纳米通道;第二,由于自身的刚性结构,CNC不会在石墨烯片层表面形成如同高分子链包覆的状态,在增强其性能的同时,维持石墨烯片层在纤维轴向的有效连接,保证杂化石墨烯纤维的高导电性(如图1b所示);第三,CNC表面丰富的亲水性基团不仅能与石墨烯片层表面残留的含氧官能团(羟基、羧基、碳基等)形成强作用的氢键网络,有效增强其力学性(如图1c所示),而且其亲水性纳米单元能赋予石墨烯高亲水性(如图1d所示),有效提高纤维与电解质溶液的亲和性。
图1. 杂化石墨烯纤维的截面电镜图(a)、电导性(b)、力学性能(c)及其亲水性能(d)
随后,他们将得到的杂化石墨烯纤维组装成超级电容器,发现其具有优异的电化学性能,同时具备优异的串并联性及柔性(如图2a-b所示),在同类超级电容器中具有相对较高的能量密度和功率密度(如图2c所示)。
图2. 杂化石墨烯纤维制备得到超级电容器的串并联性(a)、弯曲测试(b)及其Ragone图(c)
因此,以上研究表明,该杂化石墨烯纤维作为柔性电极材料在可穿戴电子器件,特别是柔性超级电容器领域具有广阔的应用前景。这一成果近期发表在Carbon 上。
论文链接:http://www.sciencedirect.com/science/article/pii/S0008622317311156
- 天津大学杨静教授与宁波材料所《Nano Lett.》:阐明电荷对纳米石墨烯抗冻效果的影响机制,并研发新型防冰涂料 2025-01-14
- 格罗宁根大学Andrea教授/爱荷华州立大学夏文杰教授 Macromolecules:接枝改善石墨烯分散 2025-01-09
- 曼大李加深团队 CEJ:用于挥发性有机化合物检测的石墨烯/金属氧化物/细菌纤维素/聚乙二醇复合气凝胶 2024-10-28
- 东华大学杨升元副教授、朱美芳教授团队发表纤维材料与器件领域前瞻性论文:可穿戴电化学储能纤维电极的挑战与要求 2019-02-15
- 英研发特殊储能纤维 地毯或能为手机充电 2014-02-28