近日,复旦大学彭慧胜教授课题组通过对碳纳米管的多级螺旋组装,成功制备了一种新型的纤维状人工肌肉材料,为实现高性能的驱动和敏感器件及应用提出了全新的思路。
据彭慧胜教授介绍,这种导电的人工肌肉材料对溶剂响应具有很高的灵敏性和选择性,在工业生产和化学品储存中,可以用来探测毒性溶剂的泄露和预警。简单来说,在生产或储存过程中,有毒溶剂及其蒸气过量或泄露时,人工肌肉材料与危险溶剂或蒸气接触,会自动智能地伸缩或旋转,从而触动警报或安全阀门的开关,发出警报告知工作人员,或是关闭通道防止危险溶剂及蒸气进一步扩散,减少对人体的危害,将发生安全事故的可能性降到最低。
研究团队将继续完善这项研究,并已经通过对纤维进行表面改性,实现了对水的收缩和旋转响应,并制成了可感应湿度变化的智能窗帘。想象一下,如果未来我们的家中或办公室有了这样的智能窗帘,那将会是怎么样的体验?窗帘可以通过感应湿度的变化,智能地展开或闭合,可以智能地调节展开的幅度大小,从而影响房间内的湿度变化。
除此之外,乙醇是当今一类已经广泛应用的新型生物质燃料,该类敏感材料在乙醇浸润下可产生高速的旋转驱动,其实质是表面能与动能的转化,进一步在纤维低端连接一个铜线圈并引入磁场,就可以用来产生电能,从而实现生物能-动能-电能的转化。
据彭慧胜教授介绍,这项研究首先是受植物内部螺旋结构的启发。自然界中,很多植物都会对外界环境的刺激产生新奇的运动行为,如松果随湿度变化产生弯曲变形,种芒在潮湿土壤表面发生卷绕运动,以及丝瓜卷须的螺旋生长等。这些植物运动对植物繁殖生长、自我防卫和养料摄取等方面起着至关重要的作用。研究发现,植物内部纤维素微纤的螺旋排布是导致上述植物运动的结构基础。
研究团队以具有高比表面积、优异的力学和电学性能取向的碳纳米管为基本单元,并对其进行多级螺旋构筑,在纤维内部形成了大量的纳米和微米尺度的管道结构,这种多级管道结构可以使溶剂快速高效地湿透到纤维内部。其对溶剂的响应速度比传统的高分子基敏感材料高三个数量级,并可以同时产生强劲的收缩和旋转运动。这种结构设计为制备高性能的智能响应材料和器件开辟了一个全新的思路。
- 北航程群峰教授团队 Sci. Adv.:创制了MXene复合纤维人工肌肉 2025-01-09
- 天大封伟教授、王玲教授团队 Matter:人工智能神经肌肉纤维束 2024-12-04
- 南京大学李承辉、南京儿童医院郑朋飞团队 NSR:一种可用于治疗大体积肌肉缺失的柔软且超强韧多功能人工肌肉 2024-11-28
- 东华大学丁彬教授/闫建华教授团队 Mater. Today综述:柔性氧化物陶瓷微纳米纤维材料的制备现状及策略 2022-11-21
- 东华大学丁彬教授/闫建华教授团队 ACS Nano:用于稳定锂金属负极的纳米纤维材料 2022-11-19
- 南开大学化学学院刘遵峰教授拟招收2022年海外一流高校优秀本科毕业生直接攻读博士生、以及招聘博士后若干 2022-04-21