搜索:  
中科院化学所在石墨烯可控制备和性能研究方面取得系列进展
2012-09-03  来源:中国聚合物网

    在中国科学院、科技部、国家自然科学基金委和化学所的大力支持下,化学所有机固体院重点实验室相关研究人员在石墨烯的可控制备和性能研究方面取得系列进展,相关结果发表在PNAS、JACS (2篇)、Adv. Mater. (3篇), 并应邀在Acc. Chem. Res. 杂志上发表了述评。

    石墨烯,作为一种完美的二维晶体因其独特的结构引起了科学界的广泛关注。石墨烯的载流子类似于相对论粒子,具有室温量子霍尔效应,载流子浓度高达1013 cm-2, 胶带剥离的石墨烯的载流子迁移率超过2.0 x 105 cm2/Vs, 比半导体工业中常用的硅高出100倍,单层石墨烯晶体管的截止频率高达427GHz, 热导率是铜的10倍,光的透过率可达97.7%, 强度是钢的100倍。2010年,诺贝尔物理学奖授予了石墨烯的两位发现者:K. S. Novoselov和A. K. Geim,以表彰他们在石墨烯发现方面做出的巨大贡献。但石墨烯在电子学方面的真正应用尚有一些基本科学问题亟待解决,如:大面积、高质量、层数可控的石墨烯的制备;石墨烯为零带隙的半导体,基于石墨烯的场效应晶体管在室温下的开关比往往小于10,限制了它们在数字电路中的应用,如何打开石墨烯的带隙与微电子加工技术的工艺兼容性问题等。另外石墨烯的奇异性能和实际应用也有待进一步探索。针对这些科学问题,相关人员进行了深入研究,取得了如下主要结果。

    液态铜上生长石墨烯。在众多的石墨烯制备方法中,化学气相沉积法(CVD)由于成本低、可控性好、可大规模制备等优点近年来掀起了对其的研究热潮。2009年,美国奥斯汀大学Ruoff组利用固体铜箔作为金属催化剂制备出了连续均匀的石墨烯薄膜。相比于传统制备石墨烯的金属催化剂,铜中碳的溶解度极低,因此可以得到单层大面积石墨烯薄膜。但是由于受到固态铜催化剂表面不均匀性影响,晶界较多,得到的石墨烯质量不高,极大地影响了石墨烯的应用。有机固体重点实验室相关研究人员创造性地引入液态铜概念,利用液态铜的良好流动性及均匀性等特点降低了所得石墨烯的晶界,制备出了高质量大面积的单层石墨烯薄膜(图1)。另外,他们还通过控制生长参数及实验温度等条件,制备了规则排布的六角石墨烯片,单个规则六角石墨烯尺寸可以达到100微米以上。

    研究结果表明,将反应温度升至铜的熔点1083℃以上,固态铜箔会变成熔融状态即液态铜。在不同的基底上液态铜会显示出不同的状态,在石英基底上,铜熔融后会变成球状,而以金属钨和钼作为基底,液态铜可以均匀铺展成平面。在此液态铜上,利用化学气相沉积方法制备了高质量、规则排布的六角石墨烯和均匀分散的石墨烯薄膜。相关研究结果发表在近期出版的美国《国家科学院院刊》(PNAS2012, 109(21), 7992)上。该论文PNAS以封面标题(Growing uniform graphene films)的形式发表,并配发了评论员的专题评论(Controlling the shapes and assemblages of graphene)。论文发表后一些媒体,如:PNAS网站,Scienceness网站,科学网进行了报道。

 

图1 液态铜上制备的规则六角石墨烯

    介电层上直接生长多晶石墨烯。他们发现通过碳氧(C-O)和氢氧(O-H)键和作用,可以加强碳氢化合物在二氧化硅基底上的吸附,从而利用氧基成核点实现了石墨烯在二氧化硅绝缘材料上的直接可控合成(图2)。制备的石墨烯具有高的光学、电学性能,其迁移率在空气中可以达到531 cm2/Vs。这一性能远高于还原氧化石墨烯,且接近于金属催化石墨烯的性能,从而开辟了石墨烯的新的研究领域。与目前主流的金属催化化学气相沉积和外延技术等石墨烯制备方法相比,这种方法与目前的硅工业兼容,石墨烯不需要转移,可以直接用于器件组装。因此避免了由于转移造成的石墨烯破损、褶皱、污染以及材料浪费等问题。该研究成果发表在《美国化学会会志》(JACS, 2011,133,17548)上。

 

图2 介电层上直接生长多晶石墨烯

    高含氮量掺杂石墨烯单晶的低温制备。石墨烯在空气中吸附氧等使其表现出p-型特征,因此要改变石墨烯的电学性能需要在其sp2-C结构中掺杂入杂原子,如N原子等。目前掺杂N原子均需在高温条件下进行,不具有经济环保等特点,同时所得氮掺杂石墨烯含氮量较低,多晶,缺陷较多。因此开发一种在低温条件下制备高含氮量,单晶氮掺杂石墨烯的方法具有重要的理论和现实意义。

版权与免责声明:本网页的内容由中国聚合物网收集互联网上发布的信息整理获得。目的在于传递信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:info@polymer.cn。未经本网同意不得全文转载、摘编或利用其它方式使用上述作品。
(责任编辑:佳)
】【打印】【关闭

诚邀关注高分子科技

更多>>最新资讯
更多>>科教新闻