硅-碳纳米复合材料将极大提高的锂离子电池性能
2010-04-15 来源:中国聚合物网
美国媒体公布,基于硅-碳纳米复合材料的高性能阳极材料可望大大提高应用于宽范围领域(从混合动力汽车到便携式电器)使用的锂离子电池的性能。
采用“从底部向上”的自组装技术生产的新结构利用了纳米技术优点,克服了以前硅基电池阳极的缺陷。这一简单、低成本的组装技术设计可使放大较容易,可与现有电池制造相媲美。
新的自组装技术已发布在3月14日《自然材料杂志(journal Nature Materials)》上。
新途径的开发为生产具有可控性质、分等级的阳极或阴极颗粒材料打开了大门,为锂离子电池技术提供了新的材料,这向商业化生产锂离子电池硅基阳极材料迈出了重要一步。
现有的锂离子电池依赖于碳形式的石墨来制取阳极,硅基阳极在理论上其能力要比石墨高出10倍,但硅基阳极在实际应用中不够稳定。
石墨阳极使用的颗粒尺寸为15~20微米,如果该尺寸的硅颗粒只简单地替代石墨,则随着锂离子的进出,而产生的扩张和收缩,硅会产生破裂而快速引起阳极损坏。
新的纳米复合材料解决了这一降解问题,有潜力可使电池设计具有使用硅的能力优势。这有助于提高给定电池尺寸的电力输出,使较小的电池可产出所需的电力。
在纳米范围内,与传统尺寸规模相比,可更精确地调整材料性质,通过纳米范围组装技术可产生更好的材料。
该复合材料阳极的组装使其形成高导电的分枝结构,像树形那样,它由碳黑纳米颗粒在高温管式炉中退火制成。硅纳米颗粒直径小于30纳米,在碳结构中采用化学蒸气沉积法生成。硅-碳纳米复合材料结构好像一棵树那样。
使用石墨碳作为导电的粘合体,硅-碳纳米复合材料然后再自组装入开放式的具有互联内孔孔道的坚韧球体中。
这些球体尺寸范围为10~30微米,可用于生成电池的阳极。相对较大的复合材料粉末尺寸(比单一的硅纳米颗粒大1000倍)可使粉末加工用于阳极组装较为容易。
硅-碳球中的内部孔道有二大用途,它们可容许液体电解质能快速使锂离子进入,以使电池快速充电,它们可为硅的膨涨和收缩提供空间,而不致使阳极破裂。内部孔道和纳米尺寸颗粒也可为锂进入阳极提供短的扩散路径,提高电池电力特性。
硅颗粒尺寸由化学蒸气沉积过程的时间以及沉积体系所用的压力来控制。
一旦组装完成,纳米复合材料阳极就可像常规石墨结构那样在电池中予以应用,电池生产商采用新的阳极材料对生产过程没有什么大的变化。
采用“从底部向上”的自组装技术生产的新结构利用了纳米技术优点,克服了以前硅基电池阳极的缺陷。这一简单、低成本的组装技术设计可使放大较容易,可与现有电池制造相媲美。
新的自组装技术已发布在3月14日《自然材料杂志(journal Nature Materials)》上。
新途径的开发为生产具有可控性质、分等级的阳极或阴极颗粒材料打开了大门,为锂离子电池技术提供了新的材料,这向商业化生产锂离子电池硅基阳极材料迈出了重要一步。
现有的锂离子电池依赖于碳形式的石墨来制取阳极,硅基阳极在理论上其能力要比石墨高出10倍,但硅基阳极在实际应用中不够稳定。
石墨阳极使用的颗粒尺寸为15~20微米,如果该尺寸的硅颗粒只简单地替代石墨,则随着锂离子的进出,而产生的扩张和收缩,硅会产生破裂而快速引起阳极损坏。
新的纳米复合材料解决了这一降解问题,有潜力可使电池设计具有使用硅的能力优势。这有助于提高给定电池尺寸的电力输出,使较小的电池可产出所需的电力。
在纳米范围内,与传统尺寸规模相比,可更精确地调整材料性质,通过纳米范围组装技术可产生更好的材料。
该复合材料阳极的组装使其形成高导电的分枝结构,像树形那样,它由碳黑纳米颗粒在高温管式炉中退火制成。硅纳米颗粒直径小于30纳米,在碳结构中采用化学蒸气沉积法生成。硅-碳纳米复合材料结构好像一棵树那样。
使用石墨碳作为导电的粘合体,硅-碳纳米复合材料然后再自组装入开放式的具有互联内孔孔道的坚韧球体中。
这些球体尺寸范围为10~30微米,可用于生成电池的阳极。相对较大的复合材料粉末尺寸(比单一的硅纳米颗粒大1000倍)可使粉末加工用于阳极组装较为容易。
硅-碳球中的内部孔道有二大用途,它们可容许液体电解质能快速使锂离子进入,以使电池快速充电,它们可为硅的膨涨和收缩提供空间,而不致使阳极破裂。内部孔道和纳米尺寸颗粒也可为锂进入阳极提供短的扩散路径,提高电池电力特性。
硅颗粒尺寸由化学蒸气沉积过程的时间以及沉积体系所用的压力来控制。
一旦组装完成,纳米复合材料阳极就可像常规石墨结构那样在电池中予以应用,电池生产商采用新的阳极材料对生产过程没有什么大的变化。
版权与免责声明:本网页的内容由中国聚合物网收集互联网上发布的信息整理获得。目的在于传递信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:info@polymer.cn。未经本网同意不得全文转载、摘编或利用其它方式使用上述作品。
(责任编辑:佳)
相关新闻
- 武汉大学陈朝吉教授、西班牙巴斯克大学Erlantz Lizundia教授 AM:锂离子电池生物基聚合物电解质的环境可持续性评估 2025-01-12
- 四川大学王延青 ACS AMI:使用 3D 导电网络硅-碳纳米管复合阳极增强锂离子电池 2025-01-12
- 广东省科学院生医所谢东Small综述:用于高性能锂离子电池的聚丙烯酸基水性粘结剂-从分子结构设计到性能研究 2024-11-05
- 美国东北大学白若冰教授课题组:液晶弹性体的热力耦合中的合成-加工-性能关系 2024-12-04
- 苏大李刚教授、美国Tufts大学Ying Chen教授/David Kaplan院士合作 AFM:人工培养肉 - 食品行业的可持续解决方案 2024-11-12
- 美国东北大学郑义教授、Marilyn L. Minus教授团队:易于制造的高透明薄型聚乙烯醇气凝胶 2024-11-10