搜索:  
浙江大学徐志康教授/张超研究员团队 Small:支撑液膜穿上聚酰胺装甲,耐用的新型气体分离膜
2024-02-22  来源:高分子科技

  人们期待能够依靠稳定高效的方式,从各类工业废气或空气中捕获富集二氧化碳,并将之用于更具附加值的工业生产活动中去,在解决环境问题的同时,创造更多的经济价值。制备获取兼具高效、长期服役、耐压的二氧化碳气体分离膜是实现“碳中和”的一大关键技术。


1. 装甲离子液体支撑液膜的设计思路(A)和制备过程(B)


  徐志康教授/张超研究员团队用烷烃-离子液体界面聚合在离子液体支撑液膜表面原位合成高渗透性的聚酰胺纳米薄膜作为支撑液膜的装甲,克服了传统离子液体支撑液膜在高压和长期吹扫下易击穿而失效的问题,构建稳定高效、耐高压的聚酰胺装甲离子液体支撑液膜材料(图1)。将这一原位生长的高渗透性装甲原位装备在离子液体支撑液膜上,可以有效提升支撑液膜的击穿压力。其提升程度和最终的击穿压力与聚合物的底膜孔径有关。例如,孔径最小的PVDF 0.1 μm底膜形成的支撑液膜击穿压力约为243 kPa,而增加了装甲后,其击穿压力为500 kPa,提升了104%(图2 A)。这一击穿压力的显著提升是由于装甲改变了支撑液膜的击穿过程。向支撑液膜的表面装备一层聚酰胺装甲后,离子液体不再直接与空气形成界面,而是在外在压力作用下,使得聚酰胺装甲弯曲,当聚酰胺装甲的形变超过其断裂伸长时,装甲被击穿并连带支撑液膜同时被击穿(图2 BC)。


2. 装甲离子液体支撑液膜的击穿压力。以小孔径PVDF微滤基底制备的装甲离子液体支撑液膜,其击穿压力提升更为明显(A)。装备装甲改变了离子液体支撑液膜的击穿过程(B)。装甲离子液体支撑液膜的击穿是由装甲的机械强度控制的,其击穿压力与PVDF支撑基底的孔径有着预期的线性关系(C)


3. 装甲离子液体支撑液膜优秀且耐用的二氧化碳分离性能。


  另一方面,装甲离子液体支撑液膜具有优秀的长期稳定性。在长期测试中,常规支撑液膜仅运行36 h即击穿。而装甲支撑液膜可以连续运行超过150 h,其二氧化碳/氮气理论分离比逐渐增加(图3 AB)。装甲离子液体支撑液膜的稳定运行压力超过先前报道的各类支撑液膜(图3 C)。同时,其长期运行时的CO2/N2气体分离性能也超过先前报道的以四氟硼酸盐形成的离子液体支撑液膜材料(图3 D)。


  综上所述,装甲离子液体支撑液膜在不影响分离效率的情况下显著提高了传统支撑液膜的稳定性,使其适用于需要高压和长期服役的广泛气体分离工况。同时,原位界面聚合制备方法的简便性和通用性使得装甲设计能够很好地应用于各种基底上。从更长远的角度来看,他们的设计为基于装甲设计功能材料提供了一种新的范式,并为在CO2分离过程中开发高性能支撑液膜铺平了道路。


  相关工作以“Supported Ionic Liquid Membrane with Highly-permeable Polyamide Armor by In Situ Interfacial Polymerization for Durable CO2 Separation”为题发表在Small上。论文的第一作者为博士研究生薛育仁,通讯作者为浙江大学高分子科学与工程学系徐志康教授和张超研究员。该项工作得到了国家自然科学基金、国家重点研发计划和浙江省自然科学基金的资助。


  原文链接:https://onlinelibrary.wiley.com/doi/10.1002/smll.202310092

版权与免责声明:中国聚合物网原创文章。刊物或媒体如需转载,请联系邮箱:info@polymer.cn,并请注明出处。
(责任编辑:xu)
】【打印】【关闭

诚邀关注高分子科技

更多>>最新资讯
更多>>科教新闻