随着电子产品以及电动汽车的快速发展,高性能储能系统的研发在世界范围内备受关注。超级电容器作为储能系统的重要分支,凭借其快速的电荷存储释放能力(高功率密度)、长时间循环寿命等优点吸引了越来越多研究者的兴趣。特别是,基于表面电化学反应的超级电容器,可以同时保持高功率密度和能量密度,展现出广阔的应用潜力。然而,这类电容器电极材料内部缓慢的电子/离子传输速率严重阻碍了电化学反应的进行,导致超级电容器的存储/释放效率低于预期。因此,改善电极材料的反应动力学是提升超级电容器电化学性能的关键策略之一。
针对上述问题,西安交通大学青年教师杨卷与大连理工大学邱介山教授合作,在前期利用导电高分子-聚苯胺(PANI)和氧化石墨烯作为结构导向剂实现镍钴氧化物/氢氧化物可控生长,构筑高性能石墨烯复合材料的研究基础上(Chem. Mater., 2016, 28, 5855; Adv. Funct. Mater., 2018, 28, 1803272; Chem. Eur. J., 2019, 25, 5527),近日,该团队通过聚乙烯亚胺高分子(PEI)调控和诱导生长的普适性设计构筑策略,制备了系列二维石墨烯复合材料(G-P-X, X代表CoS, NiCoS, FeOOH等)。研究结果表明,PEI高分子中的含氮基团作为桥连位点,可有效提升石墨烯和电化学活性物种之间的耦合作用,同时,独特的二维复合结构可进一步加强电子/离子的迁移速率。
将所制备的石墨烯复合材料作为超级电容器的电极材料,在1 A g?1的电流密度下,其比电容最高可达815 F g?1,远高于其他对比样品。且经过20000次长周期充放电循环测试,其电容保持率高达86.5%,展现出优异的循环稳定性。为进一步拓展该电极材料的实际应用,随后将其与活性炭结合构筑的不对称电容器,在700 W kg?1的高功率密度下,其能量密度高达44.6 Wh kg?1,呈现广阔应用潜力,这项研究工作亦为其他新型电极材料的设计和实用化提供了新思路。
图1 (a) 二维石墨烯复合材料 (G-P-CoS) 的制备过程示意图以及 (b) 复合材料微观结构 (c) 电化学性能表征
上述相关研究成果近期以“Polyethyleneimine-Mediated Fabrication of Two-Dimensional Cobalt Sulfide/Graphene Hybrid Nanosheets for High-Performance Supercapacitors”为题发表ACS Applied Materials & Interfaces (ACS Appl. Mater. Interfaces, 2019, DOI: 10.1021/acsami.9b03934, IF:8.456)上。博士生王满为论文的第一作者,青年教师杨卷和邱介山教授为共同通讯作者,该项工作得到了国家自然科学基金、中国博士后基金以及科技部重点研发项目等资金的支持。
- 宁波材料所王震/阎敬灵团队 JMCA: 聚酰亚胺/石墨烯气凝胶的分级多孔结构实现力学和电磁屏蔽兼容 2025-06-19
- 深圳技术大学史济东等 Carbon:基于石墨烯-纳米纤维素复合薄膜的自修复应变/湿度双模传感器的设计及在可穿戴呼吸监测的应用 2025-05-28
- 北京化工大学汪晓东教授团队 Nano-Micro Lett.: 碳化聚酰亚胺/凯夫拉纤维/氧化石墨烯@ZIF-67双向复合气凝胶封装相变材料实现多重能量转换与电磁屏蔽 2025-04-28
- 昆士兰大学乔瑞瑞团队 Adv. Mater. 综述:纳米复合材料的创新制备与应用 - 从传统合成到先进3D打印技术 2025-06-25
- 苏大程丝教授/福大赖跃坤教授/安农大朱天雪教授 NML 综述:用于监测物理、生理信号和体液信号的电纺纳米纤维基复合材料的最新进展 2025-06-20
- 天大汪怀远教授团队 Carbon:量子点改性填料与改性碳纤维协同构筑新型双向高导热CFRP复合材料 2025-06-18