搜索:  
厦门大学白华副教授团队:聚苯胺/石墨烯电极材料高电容机理探究
2018-02-02  来源:X-MOL

  近年来,聚苯胺/石墨烯复合电极材料由于其低成本、高容量以及优异的倍率性能等一系列优点,在超级电容器方面得到了广泛的研究和应用,成为当下最热门的电极材料之一。

  近日,厦门大学材料学院白华副教授团队系统研究了聚苯胺/还原氧化石墨烯(PANI/RGO)复合电极材料在超级电容器中的工作机理,首次揭示了PANI电化学降解对储能的贡献,阐明了此类复合材料高比电容的原因

  通常认为,在PANI复合材料中的RGO可以引入有利的微观结构,提高电极的导电性,并为PANI的氧化还原中体积变化提供的缓冲空间,从而提高材料的倍率性能,减少等效串联电阻,延长电极的循环寿命。然而,令人费解的是,在大量的文献报道中,PANI(理论电容量740 F/g)与RGO(实测电容量220 F/g)复合后得到的材料的电容量可以远远超出计算出的理论比电容,通常可达800 F/g以上。而研究者们通常把其超高电容性能简单归因于高电容的PANI和RGO材料之间的协同效应,这反应出人们并没有真正的理解PANI/RGO电极材料的电化学工作机理,同时也限制了聚苯胺/石墨烯复合电极材料的进一步发展。

  白华团队系统的研究了PANI和PANI/RGO复合材料在电化学测试过程中(?0.2 ~ 0.8 V vs. SCE)电化学性质和光谱的变化,证实了PANI在测试过程中降解产生了以羟基或氨基封端的苯胺寡聚物(HAOANIs)。通过计算,发现这些寡聚物的理论比电容可达1000 F/g以上。但是由于其低导电率很低,所以PANI降解会带来很大的压降,导致材料的电容无法发挥。然而,在复合材料中,RGO的高电导率提高了复合材料的导电性,使得HAOANIs能发挥出其高比电容的优势。实质上,PANI/RGO复合电极在电化学测试过程中转化为PANI/HAOANIs/RGO复合电极,从而体现出很高的比容量。

图1. PANI/RGO电化学测试过程中苯胺寡聚物生成示意图。

图2. PANI降解以及降解产物的电化学氧化还原反应方程式。

  同时,该课题组设计了一种活化方法,得到有高比电容和循环稳定性的PANI/HAOANIs/RGO复合电极,其在1.05 A/g的电流密度下电容量高达772 F/g,循环10000次后仍有91.7%的电容保持率,远超文献中报道的其他同类材料的性能。这项工作一定程度上改变了人们对聚苯胺降解的认识,对设计其他基于PANI的复合电极材料有着重要的指导意义。

  这一成果近期发表在Energy & Environmental Science 上,文章的第一作者是厦门大学硕士研究生张勤娥

  论文链接:http://pubs.rsc.org/en/content/articlelanding/2017/ee/c7ee02018j#!divAbstract

版权与免责声明:本网页的内容由中国聚合物网收集互联网上发布的信息整理获得。目的在于传递信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:info@polymer.cn。未经本网同意不得全文转载、摘编或利用其它方式使用上述作品。
(责任编辑:xu)
】【打印】【关闭

诚邀关注高分子科技

更多>>最新资讯
更多>>科教新闻