当前位置: 资讯 >> 塑料 >> 市场行情 >> 正文
2012年世界范围内新材料科技发展一览
2013-1-7 来源:科技日报
关键词:新材料

    美国

    在无机非金属材料、金属材料、高分子材料以及生物医用材料领域取得了多项成果。

    无机非金属材料领域:斯坦福和南加州大学开发出一种设计碳纳米管线路的新方法,首次生产出一种以碳纳米管为基础的全晶片数字电路。整个线路即使在许多纳米管发生扭曲偏向的情况下仍能工作,既不牺牲材料的能效,又能与现有制造设备兼容,易于商业化;莱斯大学研究人员开发出一种可将普通碳纤维制成石墨烯量子点的新方法,其最大优势在于只需一个步骤就能得到大量量子点。这种一步到位的技术比现有的石墨烯量子点研制工艺更为简化,所得到的量子点不足5纳米,具有高溶解性,大小可以通过设定制造时的温度来加以控制,在电子、光学和医学领域有巨大的应用潜力。另外,美科学家在巴基球中加入一种有机二甲苯溶剂进而制造出一种新的碳化合物,混合了晶体和非晶体两种结构,是一种“有序化的无序排列”,堪称“混沌”晶体,这种材料非常坚硬,甚至能在钻石上留下凹痕。

    金属材料领域:俄勒冈大学发现可以用非晶体来制造“超材料”并实现负折射,进而研制出一种能以低成本生产负折射材料的新技术,并为该技术申请了专利,这一成果有望带来全新的产品甚至影响制造业。康奈尔大学利用氨基酸将金属原子和硅原子相连,在争取更大的表面面积进行化学反应的同时,使多孔金属薄膜的导电性提高1000倍,这一技术为制造多种可应用于工程和医学领域的金属纳米结构开启了大门。

    麻省理工学院利用电子束光刻技术和剥离过程开发出无缺陷半导体纳米晶体薄膜,种材料的导电率约为传统方法制成的有裂缝薄膜的180倍,可广泛应用并开辟潜在的重点研究领域。西北大学和密歇根州立大学基于常用的半导体碲化铅,合作开发出一种稳定的环保型热电材料,热电品质因数(ZT)创下世界纪录,达到2.2,可将15%至20%的废(余)热转换成电力,成为迄今报告的最高效率。

    触摸显示屏或太阳能电池板导电涂层透光性越强越好,美研究人员利用一种化学溶液制造出迄今透明度最高的氧化铟锡导电薄膜,厚度只有1460亿分之一米,可使93%的光透过,堪比玻璃。该技术简单、成本低廉,可弯曲的基底使其在制造柔性显示屏方面也具有潜力。

    高分子材料领域:西北大学等用名为聚二甲基硅氧烷的聚合物造出一种多孔三维高分子材料,再将液态金属灌入孔中,从而开发出了能够像橡皮筋一样延展拉伸的电子材料,就算被弯曲或拉伸到原始尺寸的200%也能够正常工作,其在医疗器械和消费电子设备制造等领域具有相当广泛的应用价值。

    宾夕法尼亚大学研究人员展示了一种硒化镉纳米晶体,能被“印”或“涂”在柔软塑料上,制成多种性能优良的电子设备,且根据硒化镉纳米晶体的性能标准,其运载电子的速度比非晶体硅要快22倍。新型镉硒化纳米晶体电路结合了柔韧性、相对简单的制作工艺和低能耗的优点,为生物医学和安全应用领域的新型设备、各种传感器及其他方面的应用铺平了道路。

    生物医用材料领域:匹兹堡大学和麻省理工学院研制出一种会自动收缩舒张的BZ凝胶,施加一定的机械压力后,原本不跳动的BZ凝胶可再次恢复跳动,就像医疗中的心肺复苏术那样。这种特性因很像人类皮肤而具有广泛的应用前景,有助于进一步研究能感知机械刺激和化学反应的先进材料。此外,美科学家开发出的一种新奇混合纳米纤维生物材料,可在整形外科手术中作为载荷支架或受伤组织补丁,既能为细胞提供足够宽松的生长空间,又能指示它们按肌理排列成新组织,利用该技术生长出的半月板组织,几乎能与真正的人体半月板媲美。

    美生物工程师开发出一种“聪明”水凝胶,可在几秒钟内凝固形成黏合剂的新型水凝胶,如尼龙搭扣般足以抵受反复拉伸,使一个切口或创面迅速“自修复”,即便反复多次,其焊接强度也不发生任何减弱。该材料可广泛应用于医学和工程领域,如医疗缝合、靶向给药、工业密封剂和自修复塑料等方面。

注:本网转载内容均注明出处,转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。
(徐)
查看评论】【 】【打印】【关闭