当前位置: 资讯 >> 塑料 >> 行业动态 >> 正文
材料疲劳是安全大敌 塑料汽车离你并不远
2010-11-12 来源:中国聚合物网
关键词:塑料制品 碳纤维 聚乙烯 聚氯乙烯

    新型车身材料
    轿车车身材料主要是金属薄钢板,一般厚度在0.6毫米~2.0毫米。随着现代轿车技术发展,轿车材料要求既有相当的强度也要求重量要轻。采用铝合金的车身材料是一条出路,因为铝材比钢材轻。但是,铝材的加工成本高,而且冲压及焊接技术要求比较特殊,以目前的技术尚不是一般厂家可以做得到的。因此除了个别轿车车身全部用铝合金材外,大部分轿车还是局部零部件是用铝合金,例如车圈、发动机上盖等。
    为了使钢材能尽量减少重量又能保持一定的强度,冶金工程师经过多方试验发现在低碳钢内加微量元素如铌(Nb)或者钛(Ti),生成这些微量元素的碳化物,经外理可使轧制钢板的拉拉强度达420牛顿/毫米平方,能够深拉延,变形性好,可制成很薄的钢板,钢板厚度可小到0.5毫米以下。在这些薄钢板上通过电镀等工艺,涂复锌合金后再涂复一层塑料,既有钢的高强度又有锌、塑料等材料的耐腐蚀性,总质量(重量)又等同于铝合金,十分适宜汽车使用。目前这种具有耐腐蚀镀层的高强度钢板已应用在现代轿车上。
    除了高强度薄钢板外,现在还出现一种新型材料“泡沫金属”。“泡沫金属”是20世纪90年代末才出现的新型材料,但应用速度很快,有些新车型已经采用了这种材料。“泡沫金属”主要指泡沫铝合金,它由粉末合金制成。通常的粉末合金是用粉末压制成形,或用金属粉未及塑料的混合物注射模制成形。在除掉分型剂及增塑剂之后,将压制的坯件烧结(一种温度在1000℃左右的热处理方式),使它们具有一定的特性。烧结的性质及应用范围在很大程度上取决于孔隙率的大小。泡沫铝合金密度很小,当承受很大的外力而变形压缩后,当外力撤去,凭着它自身的弹性可恢复到原来的形状,有点象橡胶。
    专家认为,若外来总能量假定为100%,泡沫铝合金变形量为它的60%时,可承受外来总能量的60%。由于它本身具有一定的强度,可以经过多次这样的变形循环而不会损坏。“泡沫金属”的重量很轻,密度只是铝合金材的1/4以下,热膨胀系数与铝合金材料一样,热导率又相当低,加上它的变形恢复性能极佳,又有一定的强度,因此受到汽车业的重视,可以在轻量化及安全性方面显示优势。
    目前用泡沫铝合金做成的汽车零部件有发动机舱盖、行李厢盖、翼子板等。在安全性设计中,将泡沫金属用作吸收碰撞能量的主要材料是十分适宜的。因为目前汽车的安全设计不但要考虑乘用人的安全,还要考虑到其外车辆及行人的安全,即当一旦发生碰撞时既可最大程度地保护自己又要最大程度地保护他人,因此在车身易发碰撞区域采用泡沫金属是一种很好的选择。现在已有一种“三明治”式的夹心零部件,部件里面用“泡沫金属”材料,外面再包裹上很薄的其它硬质金属材料,这样使表面具有一定的硬度,牢固耐磨,内部又能吸收变形能量。“泡沫金属”的种类也是比较多,除了泡沫铝合金外,还有泡沫锌合金、泡沫钢等等,用处各异。“泡沫金属”在汽车上的应用前景十分诱人。
    纳米技术与汽车
    早在1959年,著名物理学家、诺贝尔奖金获得者理查德.费曼预言,“人类可以用小的机器制作更小的机器,最后将变成根据人类意愿,逐个地排列原子,制造产品。”今天,费曼这个预言巳经开始实现,这就是现在风靡全球的纳米技术。
    纳米是一个计量单位。人们熟知的1米=1000毫米,而1毫米=1000000纳米(一百万纳米),也就是说,1纳米=1/1000000毫米(百万分之一毫米),这么微小再微小的空间,实际上就是组成物质的基本单位,原子和分子的空间。自从80年代初发明了电子扫描隧道显微镜后,世界就诞生了一门以纳米作单位的微观世界研究学科-纳米科学,在100纳米以下的微小结构中对物质进行研究处理的技术则称为纳米技术。
    进入90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学、纳米生物学等等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。
    汽车技术的发展有赖于材料技术的发展,而纳米技术的应用,为材料技术的发展奠定了基础。专家预测,纳米界面材料技术即超双亲性二元协同界面材料技术(亲水亲油)和超双疏型界面材料技术(疏水疏油),可以在任何材质表面实现。因此,如果国产橡胶材料应用上述技术,困扰国产汽车的漏油渗油现象等问题将得到解决。
    汽车应用塑料数量将越来越多。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。由于纳米粒子尺寸小于可见光的波长,纳米塑料可以显示出良好的透明度和较高的光泽度,这样的纳米塑料在汽车上将有广泛的用途。
    经过纳米技术处理的部分材料耐磨性是黄铜的27倍,钢铁的7倍,例如纳米陶瓷轴承已经应用在奔驰等高级轿车上。
    目前我国已经研制出一种用纳米技术制造的乳化剂,以一定比例加入汽油后,可使象桑塔纳一类的轿车降低10%左右的耗油量。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力,根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,可以不用昂贵的超低温液氢储存装置。
    纳米做为一门新兴技术,完全没有必要去神化它,炒作它,科学技术就是科学技术,来不得半点虚假。它有许多方面还没有被人们认识,正因为如此,纳米技术在汽车方面的应用是一个新课题,将会越来越受到行业人士的重视。(2001.3.16)
    科研人员发现,当微粒达到纳米量级时会出现一种新奇现象,它的周期性边界被破坏,从而使其声、光、电、磁、热力学等性能呈现出与传统材料的极大差异。根据纳米材料的结构特点,把不同材料在纳米尺度下进行合成与组合,可以形成各种各样的纳米复合材料,例如纳米功能塑料。
    一般塑料常用的种类有PP(聚丙烯)、PE(聚乙烯)、PVC(聚氯乙烯)、ABS(方烯腈-丁二烯-苯乙烯)、PA(聚酰胺)、PC(聚碳酸酯)、PS(聚苯乙烯)等几十种,为满足一些行业的特殊需求,用纳米技术改变传统塑料的特性,呈现出优异的物理性能,强度高,耐热性强,重量更轻。随着汽车应用塑料数量越来越多,纳米塑料很可能会普遍应用在汽车上。
    这些纳米功能塑料最引起汽车业内人士注意的有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。
    阻燃塑料是以纳米级超大比表面积的无卤阻燃复合粉末为载体,经表面改性可制成的阻燃剂,利用纳米技术添加到聚乙烯中。由于纳米材料的粒径超细,经表面处理后具有相当大的表面活性,当燃烧时其热分解速度迅速,吸热能力增强,从而降低基材表面温度,冷却燃烧反应。同时当阻燃塑料燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,此碳化层起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。这种阻燃塑料具有热稳定性高,阻燃持久、无毒性等优点,消除了普通无机阻燃剂由于添加量大对材料力学性能和加工材料污染环境带来的缺陷,可以取替有毒的溴类、锑类阻燃材料,有利环境保护。目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料能够轻易达到要求。
    增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。增强增韧塑料可以代替金属材料,由于它们比重小,重量轻,因此广泛用于汽车上可以大幅度减轻汽车重量,达到节省燃料的目的。这些用纳米技术改性的增强增韧塑料,可以用于汽车上的保险杠、座椅、翼子板、顶蓬盖、车门、发动机盖、行李舱盖等,某至还可用于变速器箱体、齿轮传动装置等一些重要部件。
    抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上,据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。
    抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。高效的抗菌塑料可以用在车门把手、方向盘、座椅面料、储物盒等易污垢部件,尤其是公交车扶手采用无机纳米抗菌塑料,可以大大减少疾病的传播,改善车上卫生条件。
注:本网转载内容均注明出处,转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。
(苒儿)
查看评论】【 】【打印】【关闭