自组装是构筑基元自发形成有序结构的过程。自然界中的自组装现象处处可见。对于生命体系,众多生理功能的实现都依赖于自组装形成的多级有序结构,如蛋白质的折叠、染色体的形成都与自组装密切相关。对材料科学而言,如何利用自组装得到性能优异的纳米材料始终是重要的科学问题。然而,从分子层面设计构筑基元,进而“自下而上”地形成所需的复杂有序多级结构,始终是一个巨大的挑战。例如,嵌段共聚物能够通过微相分离形成丰富的有序纳米结构,但若想要精确调控微相分离则需要精确调控共聚物的组成和分子量,其制备过程需要繁琐的序列加料和条件严苛的活性/可控聚合。
近期,北京大学陈尔强教授和杨爽研究员团队发现,只需将两种仅尾链不同的楔形单体进行“一锅法”聚合,即可得到一类具有优异自组装性能的侧链液晶无规共聚物(图1a)。取决于不同的组成(可通过加料比简单调控),该无规共聚物可呈现的自组装结构包括:液晶柱状相(ColH)和基于侧链自识别的球状相(S)、柱状相(HEX)、双连续相(GYR)和层状相(LAM)。这是首次在无规共聚物体系中获得GYR相。相关工作以题为“Liquid crystal promoted self-assembly of statistical copolymers into diverse nanostructures with precise dimensions”发表在《JACS》上。文章的第一作者是北京大学化学与分子工程学院的博士研究生张龙龙。该研究得到国家自然科学基金委的支持。
图1. (a)无规共聚物的自组装示意图,(b)两种楔形单体的化学结构。
两种楔形单体(M-3D和M-3EO)的化学结构如图1b所示,其“一锅法”聚合得到的共聚物以聚环辛烯为主链,侧链则是沿主链无规分布的两种楔形结构单元。这种无规共聚物中脂肪性的主链和芳香性的侧链会发生微相分离。进一步,在液晶基元的取向作用下,两种仅在尾部有所不同的侧链之间也会发生分离而分别分布在主链的两侧,因而每根链将形成新的构筑基元。构筑基元的界面斜率与组成相关,基于此,无规共聚物可以形成各种丰富的自组装结构。在分子设计上选用柔顺的聚环辛烯作为主链,这有利于弯曲界面的形成。侧链经柔性间隔基连接到主链,使得主/侧链的动力学充分“去偶合”,从而给予侧链充分的自由度进行有序排列。
图2. (a-b)P1-Xs在30 ℃ 时的1D XRD谱图,(c)XRD谱图中第一级衍射峰的q值随组成的变化。
图3. (a-d)P1-Xs的AFM图,(e)HEX的模型图,(f)P1-0.30的TEM图,(g)P1-0.30的EDM图。
图4. (a)P1-0.20的变温XRD谱图,(b)P1-0.50的变温XRD谱图,(c)P1-Xs的相图,其中黄色区域P1-Xs的自组装行为类似嵌段共聚物,蓝色区域由M-3D形成的“多链超分子柱”占主导。
侧链的液晶性对于P1-X形成有序结构是至关重要的。研究者发现当侧链不含液晶性时,两种侧链之间不再发生微相分离,无规共聚物直接进入无定形状态。分析表明,液晶基元间的各向异性排列增强了两种侧链发生相分离的能力,即便仅有微小的化学结构上的差别,侧链液晶无规共聚物中不同侧链的自识别和分凝也能够进行。进一步的实验还表明,这种侧链液晶无规共聚物侧链间的微相分离并非特例,它不局限于聚环辛烯主链和楔形侧链,当主链变得较为刚性(如聚降冰片烯)或是将侧链改为棒状液晶基元,类似的微相分离同样能被观察到。
原文链接:https://doi.org/10.1021/jacs.4c11649
- 中科院化学所符文鑫研究员、青科大沈勇/李志波教授团队 Prog. Polym. Sci. 综述:典型碳环与氧杂环单体开环聚合制备功能聚合物研究进展 2024-12-30
- 青科大沈勇/李志波教授团队 Angew:有机铝配合物高效催化α-亚甲基-δ-戊内酯开环聚合制备功能化闭环循环聚酯 2024-11-05
- 华东理工刘润辉教授课题组 Nat. Protoc.:NCA敞口快速开环聚合制备多肽聚合物的方法 2024-10-10
- 浙江大学凌君教授团队《ACS Macro Lett.》:富甘氨酸的氨基酸无规共聚物的合成方法 2023-10-27
- 南京大学胡文兵教授课题组研究综述:结晶共聚物的分子建模及其应用 2023-03-04
- 中山大学李乐教授课题组《Chem. Sci.》:彻底BaeyerVilliger氧化后修饰实现挑战性醋酸乙烯酯共聚物的合成 2022-11-24