具有长波长的小分子量发光体引起了广泛的研究型兴趣。该工作将吸电子基团连接到4H-吡喃-4-硫酮核心上,进一步降低了硫代羰基化合物固有的低激发能,所得的小分子量磷光体掺杂进聚合物基质后均具有近红外(NIR)RTP发射。其中一个磷光体分子量仅为162,却能发射峰值为750 nm的RTP,且其Stokes位移高达15485 cm-1(403 nm)。该工作为使用小分子量发光体获得NIR RTP提供了一种有趣的策略。
室温磷光(RTP)材料具有比荧光更长的寿命和更大的Stokes位移,在有机发光材料研究领域备受关注。近年来,研究者使用多种策略提升纯有机分子的系间窜越(ISC)并抑制其激发态的非辐射跃迁,出现了各种纯有机RTP材料。长波长发光通常通过拓展共轭实现,这类分子溶解度较差,合成和纯化等过程都更为困难。对于RTP来说,Stokes位移的优势也会因单重态-三重态能级差减小而降低。并且,稠环芳烃经常致癌且难以降解。除此之外,小分子是否能有长波长发射也成为了一个非常有趣的科学挑战。部分研究者将两对电子给体和受体连接在苯环上,这一“X形苯”策略曾用于荧光和磷光,但它们分子量仍然不小,也没有实现近红外(NIR)发射。
图1 单环近红外磷光体的设计、合成、性能、应用的示意图。
图2 PT、PTmEst和PTmCN稀溶液的(a–c)室温下吸收(蓝线)、77 K下发射(红线)和(d–f)HOMO-1(左)、HOMO(中)和LUMO(右)。
PT的低电子能级是因为硫原子孤对电子的高能量,通过芳环上的吸电子取代有望进一步降低激发能量。该工作选取了氰基这一个具有强共轭吸电子效应的基团,从传统的共振理论判断,氰基在相对碳-硫双键的间位时应当效果最强。白屈菜酸这一种源自白屈菜的天然产物提供了两个天然的间位取代位点,而其羰基氧也可以硫代(图1b),由中间体硫代产生的乙酰氧基取代化合物PTmEst也可以合成。
作者使用密度泛函理论(DFT)预测了所设计的两种磷光体的吸收和发射,结果显示它们相对PT的吸收和发射都有显著的红移,且PTmCN的红移程度更大。共轭吸电子基团也确实参与了取代化合物的LUMO。作为对比,氰基连接在碳氧双键邻位的产物PToCN的预测红移程度小得多,邻位氰基对LUMO的参与也较为不明显。
图3 PTmEst@PMMA(上)和PTmCN@PMMA(下)室温下的吸收(蓝线)和发射(红线)光谱(左)、变温光谱(中)和二维衰减曲线(右)。
综上所述,该工作成功设计和制备了具有近红外RTP发射的单环磷光体。吸电子基团成功辅助了硫原子高能量孤对电子的n→π*跃迁。掺杂薄膜的最大发射波长为750 nm,Stokes位移为15485 cm-1(403 nm),而发光体分子量仅为162。该研究为小分子实现NIR RTP提供了一种有趣的策略。
原文信息:Zi-Ang Yan, Chenjia Yin, He Tian, and Xiang Ma*. Near-Infrared Room-Temperature Phosphorescence from Monocyclic Luminophores. Angew. Chem. Int. Ed., 2024, DOI: 10.1002/anie.202417397.
https://onlinelibrary.wiley.com/doi/10.1002/anie.202417397
课题组网站:https://www.x-mol.com/groups/XiangMa
- 暂无相关新闻