自发定向的流体输运过程是动植物实现高效低耗行为的关键之一。例如,沙漠中的德克萨斯角蜥能够利用微尺度排列的鳞片通道主动吸水。猪笼草能够将润滑剂自发运输到瓶口,形成光滑的捕虫界面。向自然界学习,生物启发的流体操控界面被广泛应用于液体收集,多相催化等领域。通过将超亲水表面与折叠结构相整合,南开大学材料科学与工程学院曹墨源课题组仿生构筑了具有双不对称结构的仿贝壳状超亲水开放通道(图1)。所制备的三维双不对称结构的液体通道仅通过毛细力就可以主动捕获包括液滴,大通量液流以及中高温蒸汽在内的多种液体,实现不依赖重力的液体输运和收集。借助仿生双不对称结构和超亲水基底,通道的液体输送能力也得到了极大地提高。此外,将该材料与辐射制冷层进一步结合,研究者设计了一种能够定向收集液体以及辐射制冷的冷凝器,证明了材料的可集成性和多功能性。相关研究论文近期发表于Advanced Materials (2023, 2211596)。
图1:仿贝壳状超亲水折叠通道(S-SLO)的设计思路以及独特的流体输运过程。(a)S-SLO优秀的流体输运性能。(b)S-SLO的液滴定向输运过程,液滴在不对称折叠通道的宽的一端不断滴加,被通道捕获并定向输运到窄端。(c,d)S-SLO的设计方法以及不同表面流体输运过程差异。
图2:平行超亲水折叠通道中的液滴逆重力输运。(a)超亲水通道中的双向铺展。(b)未处理的通道无法实现液体铺展。(c,d)液体在超亲水表面中逆重力铺展的机理。
图3:流体在S-SLO内的定向输运。(a)仿贝壳状超亲水折叠通道(S-SLO)能够引导液体定向输运到扇形的窄端被收集,而平行超亲水折叠通道则不具备这种能力。(b,c)液体在S-SLO内定向输运的机理。(d)不同深度和喷射模式下S-SLO的最大临界通量。(e)不同工作中液体输送通量和初始速度的比较。
图4:蒸汽在S-SLO表面的冷凝性能。(a)捕获的冷凝水会在平行通道上随机滴落,在S-SLO的窄端定点滴落(b)。在引入液体收集器后,捕获的液滴仍然会在平行通道上随机滴落(c),但是能够在S-SLO中被全部收集(d)。(e,f)沟道中存水对冷凝效率的影响。
图5:采用辐射制冷层增强冷凝效果。(a,b)基于S-SLO蒸汽收集器的复杂结构设计,包括超亲水涂层,铝箔基底以及ZrC/PDMS涂层。(c)S-SLO的潜在应用领域。(d)含有辐射制冷涂层和未处理的超亲水折叠通道在蒸汽收集过程中的对比。(e)蒸汽收集效率对比。(f)有无ZrC涂层在蒸汽收集过程中的温度比较。(g)COMSOL Multiphysics模拟。
为进一步验证S-SLO的可整合性,研究人员在蒸汽冷凝的基础上在材料上表面修饰了超疏水ZrC/PDMS涂层,通过热辐射的方式进一步增强表面散热能力,提升冷凝效率。通过对比冷凝水的收集效率表明了这种多层次S-SLO结构在收集蒸汽上具有潜在应用价值。本项工作旨在设计具有连续自发、高适应性、可靠输运能力的流体操控界面,希望为蒸汽收集、流体输运、节能减排等领域的发展提供新思路。
原文链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202211596
- 陕科大王学川教授/党旭岗副教授 Small:盲鳗粘液启发的高拉伸自修复超分子水凝胶用于多功能自供电可穿戴设备 2025-01-20
- 南工大材料学院 Nano Lett.:基于“蛇皮”生物结构启发制备HIPS/Gt@Cu合金导热复合材料,实现导热系数正温度依赖性 2025-01-18
- 厦门大学侯旭教授团队 Adv. Mater.:具有外部诱导内部微尺度流动的仿生液体囊袋 2025-01-13
- 陆军装甲兵学院张勇等 ACHM 综述:先进被动日间辐射制冷 - 从材料选择和结构设计到多功能集成化应用 2025-01-03
- 理化所李明珠/江雷团队、化学所宋延林团队 Matter:受金龟子启发的高亮度彩色日间辐射制冷薄膜 2024-11-17
- 南京大学唐少春教授团队 ACS Nano:仿生双光子序构实现高性能辐射制冷膜材料及协同增强机制 2024-04-18