随着世界经济的发展,每年排放的以含油废水和乳化油为代表的油水混合物会造成巨大的经济损失,并危害生态环境。传统的撇油、浮选、离心等油水分离方法不足以分离小于5μm的乳化液滴,这对油水分离技术提出了巨大的挑战。近年来,受生物启发的超浸润分离膜的研究对解决该油水混合物尤其是乳液的分离提供了新的思路。其中,开发对100~1000nm范围内的液滴具有高排斥性的超浸润膜材料,尤其是超浸润分离膜规模化制造技术,是解决该问题的核心和关键所在。
图1. a、b为同轴静电纺丝与普通静电纺丝过程的对比,c为PVDF-co-PDMS-AS纳米纤维膜的设计概念的演变
近日,哈尔滨工业大学教授、英国皇家化学会会士、城市水资源与水环境国家重点实验室成员邵路团队与哈尔滨工业大学(威海)中欧膜技术研究院副院长、海洋科学学院教授张瑛洁团队合作,采用简单的同轴静电纺丝技术,构建了超疏水纳米纤维膜,展现出优异的油包水乳液分离性能。在高压电场下,聚二甲基硅氧烷(PDMS)前驱体与聚偏二氟乙烯(PVDF)溶液在喷丝头中强迫混合扩散,溶液发生相转化,由于聚合物溶质粘度(PDMS和PVDF)和助溶剂(THF和DMF)的蒸发速率的差异,形成了嵌入微球的纳米纤维膜(PVDF-co-PDMS)。进一步设计了具有超快渗透性能和优异分离性能的非对称复合膜(PVDF-co-PDMS-AS)。
图2. 膜的化学结构和表面形貌研究
图3 膜表面润湿性的研究
通过同轴静电纺丝技术制备的PVDF-co-PDMS膜和PVDF-co-PDMS-AS膜的纯水接触角分别达到155.1°和157.4°,并且其水下油接触角可在1s内达到0°,表现出优异的超疏水-水下超亲油性。此外,纳米纤维膜还具有出色的抗水粘附性,最低滚动角约为6.7°。
图4 膜的油包水乳液分离性能的研究
油包水乳液经过膜过滤后变得透明,在显微镜下不能观察到液滴的存在。凭借精心定制的膜结构和表面性能,该膜对正辛烷包水乳液的渗透性能达到17,331 L m-2 h-1 bar-1,分离效率高达99.6%,对200nm以上的水滴可以实现100%去除。经过20次的循环使用,仍可保持88%的原始渗透性能。该种膜表现的超快渗透性和出色的分离效率优于文献报道数值。最重要的是,该技术可以实现770cm2大小膜片的连续生产并且可通过更改滚筒接收器的尺寸进一步扩大。
哈尔滨工业大学(威海)海洋学院程喜全副教授为该论文的第一作者,哈尔滨工业大学化工与化学学院邵路教授为该论文的通讯作者。
论文链接:https://doi.org/10.1021/acsnano.1c00158
作者介绍:
青年教师程喜全链接:http://homepage.hit.edu.cn/chengxiquan
张瑛洁教授链接:http://yjsc.hitwh.edu.cn/2017/0519/c1096a41260/page.htm
邵路教授链接:http://homepage.hit.edu.cn/shaolu 或https://publons.com/researcher/1307969/lu-shao/publications/
- 哈工大邵路教授团队 Sci. Adv.:用于超快油水分离的可生物降解静电纺丝超亲水纳米纤维膜 2023-08-31
- 武汉纺大刘延波教授、清华危岩教授与合作者 Fuel综述:开发用于油水分离的纳米纤维气凝胶的最新进展 2023-08-07
- 南京林业大学吕建雄教授团队 CEJ:具有高效集雾、油水分离功能的梯度润湿性Janus木膜的研制研究 2023-07-10
- 南科大王湘麟教授、陈柔羲副教授/天工大范杰教授:用于高性能电磁干扰屏蔽的核壳PANI/PVDF@PANI纳米纤维复合膜 2024-02-20
- 南京工业大学孙世鹏/常州大学陆天丹 AFM综述:不对称电纺纳米纤维膜的构筑及液体分离的探索 2023-12-02
- 苏州大学徐岚教授 ACS SCE:制备了混合结构的纳米纤维膜用于可穿戴摩擦电纳米发电机 2023-09-16
- 西安交大陈烽教授课题组《Small》综述:基于形状记忆微纳结构制备智能超浸润表面 2023-01-19