仿生人工肌肉材料是二十世纪90年代迅速发展起来的一类新型智能材料,正不断地掀起全球科学家的研究热潮,在航空航天、仿生机器人以及生物医疗等工程领域具有重要的应用价值。离子聚合物-金属复合材料(Ionic polymer-metal composites, IPMC),也称为电化学驱动器,是一种典型的仿生人工肌肉材料。它是由两层电极与离子聚合物组装而成的三明治结构,在电场作用下,依靠离子在电极界面的可逆脱嵌过程,实现电能与机械能的转换。因其低电压驱动、柔性大变形等特性,在软体机器人、智能穿戴以及医疗器械等方面的应用前景广阔。
目前学术界公认的IPMC材料驱动机制是电容致动机理,在驱动电压刺激下,一定数量的离子在电极层中的预膨胀、嵌入、嵌出,引起电极材料的可逆膨胀与收缩效应,这种效应导致了驱动器的宏观应变。换言之,电极材料储能越大,驱动效应越强。基于此机制,各种高储能的纳米材料都被尝试用作IPMC电极,驱动性能相比于传统IPMC材料得到大幅提升,但是较实际应用仍然存在较大的差距,曾经一度成为人们难以理解的困惑。究其原因,储能与驱动性能之间并不总是正相关的,它们之间存在一个能量转换效率的问题。经过大量的调研与探索,我们发现,电极的能量转换效率主要由材料的电学特性、孔道构型、分子结构以及力学特性等复杂因素决定。因此,想要在驱动性能和应用上取得突破,就必须发展新型纳米结构活性材料,探索新的储能-转换机制。
近期,中科院苏州纳米所陈韦研究员课题组与中科院北京化学所李玉良院士以及香港理工大学陶肖明教授等团队合作,设计制备了一种基于石墨炔新材料的电化学驱动器,并从石墨炔材料微观分子驱动机制的发现,到宏观驱动器件的高能量转换效率驱动特性,开展了全面系统的研究。提出并实验验证了一种新型分子驱动机制—石墨炔烯炔互变效应,该机制完全不同于传统的电容驱动机制,它是基于可逆配位转换效应引起的材料结构变化,如图1所示。由于常规检测手段(如:拉曼、红外等)难以捕捉这一分子尺度的配位转换效应,于是,我们创造性的利用高灵敏的原位和频共振光谱技术,从实验上验证了这一分子驱动机制,如图2所示。正是由于这种活性功能单元的作用,石墨炔IPMC柔性电极不仅表现出优异的电化学储能特性,同时,也表现出电-机械能量转换能力。石墨炔驱动器比电容高达237 F g-1,倍率特性良好,换能效率高达6.03%,远高于同类电化学换能器件,能量密度高达11.5 KJ m-3, 与哺乳动物生物肌肉能量密度相当,将电化学驱动器的性能提升到了一个新的水平,如图3所示。相关成果已发表在《自然—通讯》杂志上(Nature Communications, 2018, 9, 752)。
图1 基于石墨炔材料的烯炔互变分子驱动机制示意图
图2 利用原位和频共振光谱技术验证石墨炔材料烯炔互变分子驱动机制
图3 石墨炔电化学驱动器性能表征
感谢苏州纳米所国际实验室蔺洪振老师在和频光谱方面的合作。该工作得到国家自然科学基金、江苏省科技计划项目(产业前瞻与共性关键技术),中国科学院国际合作重点项目等的资助。
- 江苏大学胡兴好等 PNAS:快速、变刚度诱导的编织卷绕型人工肌肉 2024-11-10
- 北大刘珂团队与合作者 Adv. Mater.:可用于深水驱动的仿生人工肌肉 2024-05-03
- 南开刘遵峰、东华朱美芳院士、中国药大周湘 Nat. Commun.:超细纳米纤维的高强韧聚电解质人造蛛丝和高性能人工肌肉 2024-04-28
- 阿卜杜拉国王科技大学Vincent Tung教授、韩宇教授等 ACS Nano:新型石墨炔纳米薄膜用于超薄柔性皮肤传感 2022-09-24
- 香港理工&中科院理化所&山东大学 Angew:金属石墨炔二维网络聚合物自支撑薄膜的非线性光学应用 2021-03-04
- 中国科学技术大学王育才教授与徐航勋教授在氧化石墨炔光催化产氧及其在光动力学治疗应用研究中取得新进展 2019-06-25