图1通过强化相分离策略制备SMP的示意图及基于海藻酸钠和聚乙烯醇共混体系制备得到的强韧SMP。
超大孔水凝胶(SMP)以其高度仿生的结构和高渗透性的特质,近年来在生物医用领域备受瞩目。然而,大孔结构常致使材料整体力学性能下滑,这严重限制了大孔凝胶的进一步应用。因此,在获取大孔结构的同时维持高韧性,对于大孔凝胶材料而言无疑是一项重大挑战。
近期,浙江大学相佳佳研究员、邵世群研究员以及刘欣研究员团队合作,提出一种增强相分离效应制备坚韧SMP的策略。该策略通过选取两种具有不同聚集趋势且相互混溶的聚合物(海藻酸钠和聚乙烯醇),在凝胶化过程中,这两种聚合物各自聚集且相互排斥,进而诱导高密度聚合物相的产生,成功在水凝胶内部塑造出更大的孔隙结构,同时显著增强了整体材料的韧性。与传统的制备方法(如冷冻凝胶化或模板法)相比,此方法无需耗时的冷冻处理或溶剂交换,极大地提高了制备效率。而相较于采用嵌段共聚物的传统相分离策略,本方法大幅提升了材料最终的孔径。所制备出的水凝胶,孔隙率高达85%以上,同时还拥有优异的机械性能,杨氏模量约为300 kPa,压缩破裂应变高达99%。同时,通过调控不同分子量的海藻酸和聚乙烯醇,能够灵活控制孔隙尺寸范围(50 μm至700 μm),增强了该水凝胶在不同应用场景中的适用性。
通过多种结构表征手段表明,聚乙烯醇在共混体系中通过增加粘度以及定向迁移的方式,诱导海藻酸钠分子取向并堆积形成高密度聚合物相,最终在获得超大孔结构的同时确保了材料的高韧性。
图5 SMP形成的可能机制及动态观察。
这项工作通过创新的相分离策略,打破了传统高孔隙率水凝胶在力学性能方面的瓶颈,为同时兼顾高孔隙性和高机械性能的水凝胶提供了崭新思路,也为未来高效制备新型SMP提供了理论依据和实践参考。
原文链接:https://onlinelibrary.wiley.com/doi/10.1002/adfm.202412412
- 港中深张祺/长春应化所段晓征 AFM:原位相分离构筑超强离子凝胶胶粘剂 2024-12-21
- 浙江大学罗英武教授团队 ACS Nano:可编程的微相分离在弹性网络中产生图案化微结构 2024-12-09
- 福建物构所官轮辉研究员团队 ACS Nano:基于可控微相分离策略的多功能固-液两相3D打印水凝胶(TP-3DPgel)墨水 2024-11-02
- 西安交大张彦峰教授、成一龙教授团队 Adv. Mater.:基于氢键互锁双连续相增强增韧聚氨酯水凝胶 2024-12-25
- 东华大学朱美芳/侯恺 Biomaterials:可调节水蒸发焓的持续多孔水凝胶非织造布用于高渗液伤口的全阶段愈合 2024-12-25
- 浙江大学姚克、韩海杰团队 Sci. Adv.:基底膜仿生水凝胶促进角膜损伤少瘢痕化愈合 2024-12-23