牢固的界面黏附是柔性电子器件输出逼真信号的重要保证,尤其是在水下场景的应用中。然而传统的自黏材料通常存在水下黏附失效、黏附力和内聚力之间的冲突、以及各向同性黏附和黏附剂残留等诸多问题,这极大地限制了它们的实际应用。另外,强的黏附力通常要求黏附剂同时满足三个原则,即最大化黏附剂与基材的接触面积、黏附剂与基材的相互作用以及黏附剂内聚力。第一种情况要求聚合物链具有高动态性,使黏附剂能够在基材表面易于流动和铺展。第二种情况则通常要求特殊的表面处理,以实现牢固的界面粘合。而最后一种情况则需要充分的物理或化学交联,使黏附剂在遭受外力时能维持聚合物网络的稳定性和完整性。然而,这些因素往往相互制约,因此高机械强度和高黏附强度似乎非此即彼。
为了同时满足上述要求,近日,四川大学金勇教授团队通过两步堆叠法开发了一种具有非对称黏附功能的疏水结构凝胶。带有长脂肪链的疏水黏附层借助聚合物链的高流动性、多重界面相互作用以及对界面水合层的有效清除,实现了可靠的水下粘合(界面韧性超过 80 J m-2)。另一方面,由于静电作用和离子偶极作用,含有疏水聚离子液体的疏水抗黏附层更加坚韧,确保了结构凝胶整体的机械性能(断裂强度:625 kPa, 断裂应变:1191%, 韧性:3.89 MJ m-3)。这种非对称异质结构也避免了由常见非必要黏附和黏附剂残留引起的不良影响,便于了操作。 另外,基于该结构凝胶的机械传感器也被用于人体运动监测和水下无线通讯,展现出了在柔性电子领域中的应用潜力。
图6.基于疏水结构凝胶的无线传感系统用于水下通讯。
该研究成果以题为“Janus Hydrophobic Structural Gel with Asymmetric Adhesion in Air/Underwater for Reliable Mechanosensing ”在《Advanced Functional Materials》上发表,第一作者为四川大学轻工科学与工程学院博士生周荣,金勇教授为本论文的通讯作者。该项研究也得到了国家自然科学基金及四川省科技支撑计划等项目的资助。
原文链接:https://doi.org/10.1002/adfm.202316687
- 西安工程大学孙元娜 JMCA:完全疏水离子凝胶用于应变与温度监测的多模态传感器 2024-12-18
- 中南大学张翼/湖南大学全华锋团队 Adv. Sci.:“砖-砂浆-粘合剂”设计打造高弹性、疏水且阻燃的隔热材料 2024-12-07
- 兰州化物所张俊平研究员团队《Nat. Commun.》:在模拟/真实环境下具有优异防结冰/除冰性能的光热超疏水涂层 2024-11-10
- 大连工大孙润仓、邵长优/北林文甲龙 ACS Nano:强韧、自修复与环境适应性的低共熔凝胶基TENG用于全天候能量收集和人机交互 2024-12-23
- 陕科大王学川教授团队官小玉等人在柔性金属凝胶传感器领域取得一系列重要进展 2024-12-23
- 浙江大学姚克、韩海杰团队 Sci. Adv.:基底膜仿生水凝胶促进角膜损伤少瘢痕化愈合 2024-12-23
- 苏州大学严锋教授团队 AM:基于硼酸酯动态交联的聚离子液体水下粘合剂 2024-10-24