搜索:  
上海交大张洪斌研究员:冷冻-解冻诱导的透明质酸凝胶化:与分子间相互作用及分子构象相关的冷冻结构化物理过程
2017-09-12  来源:材料人
关键词:凝胶化 透明质酸

  迄今,大多数HA基的水凝胶通过化学交联的方法进行制备。然而,在这种制备方法中,交联剂和有机溶剂的使用以及终产物含反应副产物的情况难以避免,这些问题很可能对HA的生物相容性造成不利影响,从而影响HA在生物医药领域中的短期及长期应用。

  利用氢键作用、疏水作用及离子相互作用等非共价作用能有效构筑物理交联的水凝胶,从而在一定程度上解决化学法制备的水凝胶存在的问题。尽管HA是公认的非凝胶多糖,但可通过冷冻-解冻方法在pH较低的条件下制备HA的物理凝胶。

  HA冷冻-解冻物理凝胶形成的一般机制为:水溶液冷冻凝固时发生相分离,使得大分子高浓度富集相中分子链被强制排列,进而形成并行联结结构而形成交联区,该交联结构在解冻过程仍能保持。然而HA冷冻凝胶网络结构中的连接方式与一些关键影响因素(如分子尺寸、加工步骤、分子构象等)对凝胶化的作用一直以来不清晰,HA分子中羟基、羧基和乙酰氨基对凝胶网络结构形成的贡献有待阐明。

  近日,上海交通大学张洪斌研究员等人通过冷冻-解冻方法在低pH条件下制备了HA物理交联水凝胶,并对加工过程(包括冷冻时长、冷冻-解冻过程的循环次数等)、HA的分子量、多羧基及多羟基小分子的加入等因素对HA冷冻水凝胶形成的影响进行了探究,揭示了酸性和中性凝胶网络的详细结构。该工作以“Freeze-Thaw-Induced Gelation of Hyaluronan: Physical Cryostructuration Correlated with Intermolecular Associations and Molecular Conformation”为题于2017年7月28日发表在期刊Macromolecules上。

  图1:HA冷冻-解冻物理凝胶网络结构中分子间相互作用模型。

(A)酸性冷冻凝胶分子间键合情况;

(B)中性冷冻凝胶分子间键合情况;

(C)加入二元羧酸的酸性冷冻凝胶分子间键合情况。

图2:HA冷冻凝胶制备过程中HA分子链不同形态示意图


  溶液中的天然HA表现为“刚性”无规卷曲。Martens等提出多重螺旋链段和扁平链段两种链段与不同构象共存。酸化后,通过排出HA中的羧基对分子间和分子内静电排斥进行筛选,发现HA链处于扁平链构象并发生缠结。在冷冻凝胶制备过程的冷冻步骤中,分子链中的许多螺旋构象部分通过与高浓度未凝固相中的其他分子链相关联、转变为扁平链构象。

  研究人员为进一步了解HA凝胶化过程的机制、控制HA冷冻凝胶物化性质,对冷冻时长、冷冻-解冻循环的次数、HA分子尺寸、多羧基或多羟基小分子的加入等因素对冷冻凝胶化及HA最终性能的影响进行了研究,并提出一种新的HA冷冻凝胶的凝胶机制及分子间相互作用模式。

  HA冷冻凝胶化过程是一个物理低温结构化过程。本研究表明,冷冻凝胶的物化性质受冷冻时长、冷冻-解冻循环次数、HA的分子量及加入的小分子(如二元羧酸和多元醇)的影响。冷冻时间长、冷冻-解冻循环次数多、HA分子量高、二元羧酸(如琥珀酸或戊二酸)的加入使冷冻凝胶的机械强度得到提高,而多元醇(如乙二醇、丁二醇或甘油)的加入则抑制了凝胶化过程的进行。物理交联的存在使冷冻凝胶具有一定的热稳定性、耐酸解和酶解能力,这些都是生物材料的重要性质。此外,本研究还发现:-COOH间的氢键作用提高了HA酸性冷冻凝胶网络分子间相互作用的稳定性,而-COO-与-NHCOCH3基团间的氢键作用则有效提高了中性冷冻凝胶网络的稳定性;然而,羟基对酸性和中性冷冻凝胶中的凝胶网络中的氢键形成均无显著贡献。

  论文链接:http://pubs.acs.org/doi/10.1021/acs.macromol.7b01264

版权与免责声明:本网页的内容由中国聚合物网收集互联网上发布的信息整理获得。目的在于传递信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:info@polymer.cn。未经本网同意不得全文转载、摘编或利用其它方式使用上述作品。
(责任编辑:xu)
】【打印】【关闭

诚邀关注高分子科技

更多>>最新资讯
更多>>科教新闻