人工肌肉是一种可以在外界刺激下产生机械变形或运动的智能材料和器件的总称。其中电热驱动纤维基人工肌肉以其简单的控制方法、卓越的机械性能、灵活的集成方式、低廉的制造成本等独特优势,正逐步成为柔性机器人、智能纺织品、可穿戴技术的新型潜在动力源。然而,传统的电热驱动纤维基人工肌肉正面临着一个关键瓶颈:随着直径的增加,人工肌肉在加热驱动后的恢复速度显著下降,这极大影响了人工肌肉的循环驱动性能,限制了其在需要快速和重复应用中的实用性。
近期,天津大学穆九柯教授团队联合东华大学朱美芳院士团队提出了一种集成热管理、传感、驱动功能的新型人工肌肉系统。通过引入大比表面电极,开发了一种先进的柔性管状流体泵,并将该流体泵与人工肌肉集成,制备了具有并联和串联两种配置的新型流体泵冷却人工肌肉系统。集成系统成功将冷却时间缩短到原来的九分之一,并将输出功率密度提高了3倍,将有效致动频率范围扩大了3.5倍。此外,通过在人工肌肉表面集成电阻传感层,实现了对人工肌肉驱动过程的实时可视化监测。相关工作以“Integrated Thermal Management-Sensing-Actuation Functional Artificial Muscles”为题发表在Material Horizons。该文章共同第一作者为天津大学硕士研究生王路峰和博士研究生杨世举,通讯作者是天津大学穆九柯教授和东华大学朱丽萍研究员。
图1 流体泵的制作过程、工作机制和驱动性能
图2 串联与并联流体冷却人工肌肉驱动过程示意及热管理热成像图
图3 串联流体冷却人工肌肉结构参数优化
图4 人工肌肉系统集成传感层设计
原文链接: https://doi.org/10.1039/d4mh01303d
- 东北林大王成毓、杨海月教授团队 ACHM:木质素诱导的超分子作用力助力实现热管理新突破 - 打破导热与粘弹性的“死结” 2026-01-16
- 北科大王茜/江西师大兰若尘/北大杨槐教授团队 AFM: 通过多波长协同调控增强可切换辐射制冷薄膜的热管理性能 2025-11-10
- 香港城市大学吴伟教授 ACS Nano:仿生发汗电池热管理设计实现自适应高效冷却与阻燃保护 2025-09-04
- 东北大学青勇权课题组 AFM:基于微纳装甲超疏水结构的两栖电子纺织品 - 用于全天候及水下环境运动传感 2026-01-05
- 杭师大黄又举教授团队 Angew:超分子主客体助力胶体粒子超晶格膜实现酶触发式SERS传感机制 2025-12-24
- 四川大学张传芳教授团队 AFM:高灵敏压力传感器助力自适应机器抓手 2025-12-11
- 中国科大陈昶乐/邹陈团队 Angew:多重刺激响应聚烯烃基驱动器 2026-01-16