响应型水凝胶在软湿驱动器、人工肌肉、医疗器械等领域具有广阔的应用前景。水凝胶驱动器一般由响应型水凝胶制备,具有不对称构筑结构,在电、热、光、pH 等刺激作用下,发生体积或形状变化。通过对器件结构进行精确设计,可实现简单的抓取、释放、行走等动作,但耗时长(一般需要数分钟至数小时)。与工业中常见的电机驱动、液压驱动、气压驱动相比,如何提高水凝胶驱动器驱动能量转化效率、提高驱动速度,是水凝胶驱动器领域亟待解决的关键问题。
肌肉是典型的柔性生物驱动器,通过收缩和快速伸长而产生强大的爆发力,实现跳跃等动作。受此启发,中科院宁波材料所付俊研究员团队发展了一种新策略,利用基底对凝胶形变的约束,积累弹性能,并利用界面不稳定性实现能量的爆发性释放,驱动水凝胶实现可控跳跃。
研究人员制备了粘土交联和增强的温敏双层水凝胶 (图1a),通过调控材料配比,可调控各层的临界相容温度(LCST)(图1b)。在反复升温和降温过程中,双层凝胶因各层的溶胀/消溶胀性质差异而发生可逆变形、卷曲(图1c)。在此过程中,因溶胀程度差异而导致凝胶内产生的弹性能得以缓慢释放。
图1. (a)双层水凝胶的结构示意图,(b)凝胶各层平衡溶胀率随温度变化曲线,(c)双层水凝胶可逆弯曲/伸展图像。
研究发现,纳米复合凝胶在多种金属基底上具有较强的粘附性,与铸铁、铝、不锈钢、铜基板之间的粘附能可分别达到17.6、12.8、12.8、7.6 J/m2(图2)。将凝胶粘附在铝基板上,可承受较大的拉力。在拉伸过程中,随着凝胶发生形变,内部不断积累弹性能;当凝胶内积累的弹性能高于界面粘附能时,凝胶瞬间滑脱,并在40 ms内回弹(图3)。
图2. (a-b)纳米复合水凝胶从铸铁、铝、不锈钢、铜基底上90°剥离的单位宽度力-位移曲线,和(c)平均粘附能。
图3. 纳米复合水凝胶在铝基板上的粘附与拉伸-回弹
研究人员巧妙地将温度响应行为与界面粘附特性结合,设计制作了具有棘齿结构的金属导轨,利用凝胶与金属之间的黏附作用,通过棘齿结构约束凝胶的形变。在升温过程中,凝胶发生不对称收缩,产生弯曲倾向;而导轨的棘齿结构阻碍凝胶弯曲变形,凝胶内部弹性能逐渐积累。当弹性能超越界面黏附能,凝胶瞬间脱离导轨,弹性能快速释放,驱动凝胶跳跃(图4)。
图4. 温度驱动水凝胶跳跃。
研究表明,基于这一原理,凝胶的跳跃方向由导轨形状决定,凝胶总是沿着棘齿斜坡斜向上跳。跳跃距离、高度、起跳时间由凝胶的形状和尺寸决定,尖窄的前足有利于减小流体阻力,提高跳跃距离和高度;宽大的后足则意味着需要较多的弹性能克服较大的凝胶/导轨粘附力,导致起跳晚;薄的凝胶对温度变化的形变响应快,起跳早。在典型实例中(图5a),跳跃持续时间910 ms,跳跃距离10.6 mm,跳跃高度2.4 mm。
图5. 不同构型双层水凝胶的尺寸示意图和跳跃图片。
本研究突破了传统响应型水凝胶的驱动速度受水分子在凝胶网络内扩散速率制约的问题,揭示了一种基于弹性能储存和爆发性释放实现水凝胶快速可控驱动的新策略,为高性能柔性驱动器的发展提供了全新的思路和视角。
近日,该成果以Snap-Buckling Motivated Controllable Jumping of Thermo-Responsive Hydrogel Bilayers为题发表在 ACS Applied Materials & Interfaces(2018,DOI: 10.1021/acsami.8b16402)。第一作者高国荣副研究员,通讯作者付俊研究员。
该工作得到了国家自然科学基金(21574145,51603220)和宁波市自然科学基金(2016A610255)项目的资助。
- 中山大学肿瘤医院杨江教授 JCR:可吸入式pH响应型电荷反转聚合物-siRNA复合物用于ALK融合阳性肺癌靶向基因治疗 2025-03-31
- 四川大学蒲伟、肖尧予/舍布鲁克大学赵越 Angew :基于材料-结构协同作用的体温与自然阳光响应型动态液晶弹性体自持驱动器 2025-02-27
- 蔡仲雨教授团队《Prog. Mater. Sci.》综述: 基于蛋白质/肽的刺激响应型水凝胶及其传感应用 2024-10-03
- 武大常春雨、宁波材料所陈涛/魏俊杰《Adv. Mater.》:面向超灵敏自供电离子皮肤的电场诱导双梯度水凝胶离子二极管 2025-04-03
- 中国海大田维乾/北林许凤/青大张利鸣 ACS Nano: 强韧纳米纤维素/MXene基离子 - 电子双导水凝胶膜用于稳定锌负极 2025-04-02
- 西南交大鲁雄/谢超鸣、苏大李斌/林俊 Nat. Commun.:多酚介导粘附-润滑水凝胶用于类风湿性关节炎的全周期治疗 2025-03-27
- 东华大学武培怡/孙胜童团队 NSR:高熵相分离驱动水凝胶快速软硬切换 2025-03-05