全固态柔性超级电容器是一种典型的柔性电源,具有轻质、无漏液、安全、可弯折的特点,是构成柔性电子系统、可穿戴电子设备的关键部件。然而学术界一直认为固态超级电容器的电学/力学性能会随电极厚度的增加而迅速饱和/衰减,大厚度电极也因此被认为是固态超级电容器的禁区,其常用的电极厚度多为亚微米到数微米厚度,远小于商用电极对厚度的需求(100μm-150μm),限制了全固态柔性超级电容器的实际应用价值。
近日,西安交通大学机械工程学院邵金友教授课题组,揭示了固态超级电容器的力学和电学特性对固态电解质填充的依赖关系,提出了一种全新的固态电解质填充技术,使固态电解质对多孔电极(如碳纳米管多孔电极,及其导电聚合物的复合电极材料)的有效填充深度达到500μm以上,电容可随电极厚度近似等比例增加而不再出现饱和现象,其电容值比传统方法制造超级电容提高了45倍,达到了2600mF/cm2量级,比目前国际同行报道的最大值高出5倍以上;新的填充技术同时赋予了柔性超级电器优秀的机械稳定性和电学稳定性,循环弯曲5000次、充放电10000次后电容值保持95%以上。西安交通大学研究人员发明的固态电解质填充技术,改变了人们对固态超级电容器机械柔性和电学特性的认知,对任意多孔电极材料均具有普适性,将对全固态柔性超级电容领域产生重要影响。
该研究成果近日在《自然·通讯》在线发表,西安交通大学机械工程学院李祥明副教授为本文第一作者,邵金友教授与美国伊利诺伊大学香槟分校Paul V. Braun教授为本文的共同通讯作者,西安交通大学为本文的第一通讯单位和第一署名单位。邵金友教授课题组在卢秉恒院士的领导下,长期致力于以微纳米尺度流体流变为主要技术特征的微纳制造工艺、装备和器件开发方面的研究工作,获得国家自然科学基金“纳米制造的基础研究”重大研究计划集成项目、国家重点研发计划等重大项目的支持,在电驱动纳米压印技术、柔性电子制造和智能结构与微纳仿生制造等方向形成了鲜明的研究特色。
本成果的研究设想和实验方案由邵金友教授和李祥明副教授提出,Paul V. Braun教授对项目的实施进行了指导,研究工作得到了国家自然科学基金“纳米制造的基础研究”重大研究计划、美国国家科学基金、中国博士后科学基金的支持。
- 兰州理工大学冉奋教授课题组 Macromolecuels:汉森溶解度参数调控膜微结构及超级电容器 2024-11-07
- 深大万学娟教授团队Nano Lett.:生物质水凝胶电解质迈向绿色耐用的超级电容器-增强阻燃性、低温自愈性、自粘性和长循环稳定性 2024-10-01
- 北京大学翟茂林教授团队 EEM:超拉伸高导电水凝胶电解质及其一体式柔性超级电容器 2024-08-30
- 青岛大学张健敏团队《ACS Nano》:“刚柔相济”多重分子作用网络协同提升全固态电解质的电化学性能和安全性 2024-05-07
- 南林黄洋副教授等 AFM:生物合成法构筑氮功能化细菌纤维素基高性能固态电解质 2024-04-25
- 福州大学杨程凯/吴明懋/刘哲源 AFM:分子定制共聚物实现锂金属电池人工固态电解质的动态界面保护 2024-04-12