我国新材料应用市场需培养
20世纪80年代末,日本首先研发两步法制备尼龙6/蒙脱土纳米复合材料,此后,美国nanocor公司也进行聚合物/粘土纳米复合材料的工业化研究。我国中科院化学所工程塑料国家重点实验室用天然粘土矿物蒙脱土作为分散相,利用插层聚合复合、熔融插层复合等方法制备了纳米塑料,成功开发出以聚酰胺、聚酯、聚乙烯、聚苯乙烯、环氧树脂、硅橡胶、聚苯胺、聚氨酯等为基料的一系列纳米塑料。
我国纳米技术研究进展较快,特别是在纳米涂料、纳米抗菌材料、纳米粉体加工技术等方面取得不少成果。据美国科学引文索引系统《SCI》收录的关于纳米研究论文的统计分析表明,我国在这一领域发表的论文数量仅次于美国和日本,居世界第三。
纳米科技是当今引导产业化革命的重要技术,纳米技术的发展将对石油化工领域催化材料的革新、三大合成材料的改性产生重大影响,但纳米复合材料的市场化应用还有很长的路要走。
北京崇高纳米科技有限公司董事长、中科院化学所高分子物理博士李毕忠,长期从事纳米材料和高分子材料研究开发和产业化实践,他表示,迄今已有越来越多的粘土/聚合物纳米复合材料体系得到研究和开发,如粘土/尼龙、粘土/热塑性聚酯、粘土/聚丙烯、粘土/超高分子量聚乙烯、粘土/聚苯乙烯、粘土/低分子液晶、粘土/聚苯胺、粘土/ 热固性塑料(如环氧树脂、酚醛树脂、不饱和聚酯)、粘土/橡胶(聚氨酯、硅橡胶、丁腈橡胶)等,但是具有较大产业化价值和已经实现规模生产的不多。其主要原因,一是粘土/塑料纳米复合材料的工业化生产技术开发投入巨大,开发周期较长;二是所开发的纳米复合塑料新材料的应用市场需要培养,过程漫长。
链接纳米是一个长度计量单位,一纳米相当于十亿分之一米,大约是10个原子并列的宽度。当物质颗粒小到纳米量级后,这种物质就可被称为纳米材料。由于纳米颗粒在磁、光、电、敏感等方面呈现常规材料所不具备的特性,因此在陶瓷增韧、磁性材料、电子材料和光学材料等领域有广阔应用前景。
复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。在复合材料中,通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。分散相是以独立的相态分布在整个连续相中,两相之间存在着相界面。分散相可以是纤维状、颗粒状或是弥散的填料。复合材料中各个组分虽然保持其相对独立性,但复合材料的 性质却不是各个组分性能的简单加和,而是在保持各个组分材料的某些特点基础上,具有组分间协同作用所产生的综合性能。由于复合材料各组分能“取长补短”,充分弥补了单一材料的缺点,因而产生了单一材料所不具备的新性能。当有机聚合物为连续相,纳米材料为分散相时,组成的就是聚合物基纳米复合材料。