聚合物电介质薄膜电容器具有极高的能量转换速率,在电磁能装备、电力电子以及新能源装备等领域的作用至关重要。随着装备、器件往紧凑化、轻量化、工作环境极端化方向发展,对聚合物电介质薄膜的储能密度以及耐高温性能的要求越来越高。电荷存储密度和电场强度的平方成正比,因此,电介质薄膜承受的电场增加,电荷存储密度则会快速增加。然而,聚合物薄膜在高电场下以电子电导为主,不再符合欧姆定律,电导电流随电场强度增加呈指数增大,会产生大量的焦耳热。传统聚合物电介质的导热系数普遍较低(< 0.2 W/(mK)),散热效率很低,会造成介质温度快速升高,进而引起电导指数增加、耐电强度急速降低等连锁反应,从而造成器件、装备失效等严重问题,在高温下工作的器件装备散热问题尤其提出。尽管可以通过引入纳米添加等方式增加聚合物电介质的导热系数,但这往往以牺牲耐电强度为代价,更重要的纳米添加给薄膜制造工艺带来极大挑战。因此,开发耐高温、本征高导热的聚合物电介质薄膜是最好选择。
图1双链结构聚合物电介质薄膜的分子结构和自组装形貌
图2双链结构聚合物电介质的导电性和电击穿强度
采用红外相机直观地研究了200 oC、300 MV/m下PSBNP-co-PTNI0.02和聚醚酰亚胺(PEI,已知最好的商品耐高温聚合物电介质薄膜)的连续充-放电循环过程中的发热现象,在高导热的PSBNP-co-PTNI0.02薄膜中未观察到局部热积聚现象,而低导热的PEI膜则出现了明显的局部热积聚。研究团队模拟电介质薄膜电容器芯子的热场分布,发现PSBNP-co-PTNI0.02薄膜电容芯子的中心温度远低于PEI薄膜电容芯子,充-放电循环更加稳定,实验也证明PSBNP-co-PTNI0.02薄膜连续充-放电循环寿命是PEI薄膜的6倍。
原文链接:https://www.nature.com/articles/s41586-022-05671-4
- 南工大材料学院:低渗流阈值PVDF/MWCNT复合材料的导电、流变及机械性能研究 2024-04-24
- 福州大学肖方兴教授课题组《Adv. Funct. Mater.》: 非共轭聚合物作为界面电荷传输层加速光电催化水氧化 2022-05-16
- 西安交大鲁广昊教授课题组等《Mater. Horiz.》:合成了一种新型绝缘聚合物分子,可实现高度稳定的驻极体 2020-05-06
- 吉大孙俊奇教授团队 Macromolecules:基于“刚柔相济”微相分离结构设计制备兼具耐低温与耐高温性能的高强度热塑性弹性体 2025-01-22
- 北化贾晓龙教授、杨小平教授 Adv. Compos. Hybrid. Ma.:碳纤维复合材料新型耐高温界面相的构建方面取得新进展 2024-04-28
- 哈工大冷劲松院士团队 CEJ:基于封端策略调控交联网络密度的耐高温形状记忆邻苯二甲腈树脂 2024-04-11
- 西工大顾军渭/阮坤鹏团队 Angew:本征高导热液晶聚二甲基硅氧烷热界面材料 2025-01-22