生物3D打印技术以其快速、精准、个性化等优点,可快速用于构建微流控系统。因为它具有自动化、低成本和高通量的特性,在组织工程领域得到了广泛应用。目前报道的纸基肿瘤模型成型后,其内部形成的致密结构往往阻碍了细胞的迁移,从而在一定程度上直接限制纸基模型中微孔通道内外细胞的相互作用。
近日,哈佛大学医学院Y. Shrike Zhang教授课题组为了克服生物纸基血管化组织模型因其致密的网状结构不利于细胞迁移的问题,采用一种成本低、生物相容性良好的纳米材料-细菌纤维素 (bacterial cellulose) 水凝胶作为潜在的新型软基质,通过结合生物3D打印技术和发泡技术,构建了一种纸基可灌流微通道内嵌的多孔血管化肿瘤模型。其将聚二甲基硅氧烷 (polydimethylsiloxane,PDMS) 作为牺牲墨水并打印在细菌纤维素悬浮基质中,通过风干形成纸状膜。与之前使用的半固体凡士林-液体石蜡油墨(Nano Lett. 2019, 19, 6, 3603–3611)不同,PDMS牺牲墨水固化后,能够抵抗发泡过程中的变形,即将膜浸入硼氢化钠 (NaBH4) 水溶液中进行发泡处理,细菌纤维素基质在发泡过程中逐渐演变为多孔结构,同时PDMS微纤维形状能够完整保持。随后,通过去除PDMS牺牲墨水形成中空的可灌流微流控通道,最后将乳腺癌细胞和内皮细胞细胞分别引入周围扩张的多孔细菌纤维素基质和微通道中,实现了多孔血管化肿瘤模型的构建并用于抗癌药物的筛选,为构建低成本(装置成本不到4美分)的组织模型提供了一个新平台。
图1. 3D牺牲打印和发泡技术结合制备低成本多孔纸基血管化组织模型示意图。
该研究成果以“Expanding Sacrificially Printed Microfluidic Channel-Embedded Paper Devices for Construction of Volumetric Tissue Models in vitro”为题发表在期刊Biofabrication上。文章的共同第一作者为哈佛大学联合培养博士生栗洪彬和程凤。Y. Shrike Zhang教授为本文的通讯作者。
论文链接:
https://iopscience.iop.org/article/10.1088/1758-5090/abb11e
https://pubs.acs.org/doi/10.1021/acs.nanolett.9b00583
- 曼大李加深团队 CEJ:用于挥发性有机化合物检测的石墨烯/金属氧化物/细菌纤维素/聚乙二醇复合气凝胶 2024-10-28
- 江西理工大学张思钊课题组 IJBM:生物基气凝胶的多功能赋予及其协同优化 2024-09-10
- 南林黄洋副教授等 AFM:生物合成法构筑氮功能化细菌纤维素基高性能固态电解质 2024-04-25
- 复旦大学彭勃 Adv. Sci.:从木基水凝胶阵列设计到机器学习解码 2024-11-13
- 西电王忠良教授团队 Adv. Sci.:焦亡之光 - 突破乳腺癌术后复发的新希望 2024-11-13
- 西工大李鹏教授 FlexMat 综述:导电水凝胶在生物电子的挑战与机遇 2024-11-13
- 中山大学翟文涛教授团队 Adv. Sci.:受骆驼皮毛启发的用于冷热交替环境的温度调节发泡纤维及织物 2024-10-10