12月18日,清华大学化学系张希教授研究团队在德国《应用化学》(Angew. Chem. Int. Ed.)期刊发表题为《细菌原位诱导的超分子自由基阴离子用于选择性光热治疗》(Supramolecular Radical Anions Triggered by Bacteria In Situ for Selective Photothermal Therapy)的研究论文,报道了利用超分子复合物对细菌的化学响应,原位产生超分子自由基,构筑了具有优异选择性与高效抗菌性能的新型超分子光热材料,实现了对细菌高效的选择性光热杀灭。
图1. 具有优异选择性与高效抗菌性能的超分子复合物的构筑及抗菌行为。
超分子复合物(CPPDI)由苝酰亚胺衍生物(PPDI)和葫芦[7]脲(CB[7])通过主客体相互作用构筑而成(图1)。通过形成超分子复合物,一方面可以防止PPDI的疏水部分插入细菌膜,从而消除其非特异性抗菌行为;另一方面通过CB[7]的位阻效应可以减弱PPDI分子间的聚集,进而避免自由基阴离子的淬灭,提高光热转化效率。
研究表明,将超分子复合物与细菌共培养后,大肠杆菌等兼性厌氧菌具有将其原位还原生成超分子自由基阴离子的能力。而相比之下,枯草芽孢杆菌等需氧细菌还原性较弱,则不能还原超分子复合物生成超分子自由基阴离子。由于超分子自由基阴离子在近红外光区具有良好的光热转换性质,通过近红外光(808 nm)的照射,实验组中大肠杆菌表面温度显著增加,30分钟内可升至65℃,抑菌效率高达99%(图2)。与之对照,枯草芽孢杆菌表面温度未见上升,故而其存活率保持不变。因此,利用不同细菌对超分子复合物具有不同的还原能力,实现了对大肠杆菌等兼性厌氧菌的高效选择性杀灭。
图2. 与超分子复合物共培养之后的大肠杆菌(a)和枯草芽孢杆菌(b)在近红外光照射下的温度变化及存活率。
光热疗法是一种对抗耐药性菌株的一种有效方法,通过光热材料引起菌株表面升温,使其蛋白质变性,进而导致菌株的死亡,而且可以避免产生耐药性。该工作利用超分子复合物对微生物表面性质的原位化学响应,特异性地被兼性厌氧菌原位还原为超分子自由基阴离子,实现了高效的选择性光热抑菌。这一选择性抑菌策略有望用于调控生物体中微生物群落的平衡。该项成果被德国《应用化学》选为“非常重要的论文”,并于12月7日以“细菌激活自身的杀手”为题对此成果撰写了专门的评论。英国科学期刊《自然》于12月18日在研究亮点评述栏目以“光供能的细菌杀手:有害细菌帮助分子组装体转化为抗生素”为题专门评述了该项成果。
有机自由基既是常见的反应中间体,也是功能材料的构筑基元,调控自由基活性,对调控化学反应和构筑有机功能材料均具有重要意义。张希教授研究团队提出了“超分子自由基”的新概念,系指通过非共价相互作用稳定或活化的自由基。他们利用葫芦脲的静电效应调控分子轨道能级,或利用其空间位阻效应抑制分子聚集,实现了对多种自由基阴离子的稳定,以此构筑了一类新型的有机近红外光热材料(参见《化学科学》., 2015, 6, 3342; 《化学科学》., 2015, 6, 3975)。在此基础上,他们还实现了对自由基阳离子的活化,以此建立了一种超分子催化的新方法(参见《应用化学》, 2016, 55, 8933)。本工作是他们利用超分子自由基构筑智能功能材料的新开拓。
张希教授和徐江飞助理研究员为本文的通讯作者,清华大学化学系博士生杨昱翀为本文的第一作者。本研究在抗菌测试等实验中得到了中国科学院化学研究所王树研究员的帮助和支持。该研究由国家自然科学基金委和科技部提供经费支持。
论文链接:http://onlinelibrary.wiley.com/doi/10.1002/anie.201708971/abstract
- 武汉大学陈朝吉教授 Adv. Mater.: 超分子尺度亲水性调控助力纳米纤维素快速脱水、成型及高强、阻燃块体结构材料构筑 2025-01-21
- 陕科大王学川教授/党旭岗副教授 Small:盲鳗粘液启发的高拉伸自修复超分子水凝胶用于多功能自供电可穿戴设备 2025-01-20
- 华南理工大学张维教授团队 Macromolecules:利用相分离辅助的超分子聚合技术制备金属-有机多面体柔性膜 2025-01-17
- 常大王建浩教授、港中大夏江教授 JCR:重组XVII型胶原蛋白微针 →经皮递送抗菌铜-DNA纳米颗粒用于皮肤抗感染修复 2025-01-15
- 西工大李鹏教授/王腾蛟副教授 AFM:硒化氢气体递送抗菌高分子纳米材料 2025-01-03
- 江南大学王平教授课题组 AFM:酶促氧化还原介导构建多模式协同抗菌纺织品 2024-12-31
- 南京林业大学黄超伯/熊燃华课题组 Nat. Protoc.:光热电纺纳米纤维的胞内递送及其在细胞免疫治疗的应用 2025-01-23