一、个人简介:
冉奋,教授/博导,甘肃省飞天学者,2022科睿唯安“高被引科学家”。”沈阳化工大学高分子复合材料本科毕业,分别于北京化工大学材料科学与工程学院(化工资源有效利用国家重点实验室)、四川大学高分子科学与工程学院(高分子材料工程国家重点实验室)获得工学硕士、工学博士学位。新加坡国立大学访问研究员、美国加州大学圣克鲁斯分校访问学者,美国加州大学圣芭芭拉分校学习双语教育教学法。担任中国生物材料学会血液净化材料分会委员,担任InfoMat、Energy&Environmental Materials、eScience、Advaned Power Materials、InfoScience、材料导报、电子元件与材料等期刊的青年编委、执行编委或编委。获得甘肃省青年教师成才奖,甘肃省重点人才项目和兰州理工大学红柳杰出人才计划资助。现为兰州理工大学材料科学与工程学院教师。个人简介:orcid.org/0000-0002-7383-1265 。
二、主持项目:
主持国家自然科学基金包括青年、地区、面上项目5项;主持并完成博士后面上项目、博士后特别资助,甘肃省重点人才项目,以及甘肃省自然科学基金;主持四川大学高分子材料与工程国家重点实验室开放基金、沈阳金属材料国家实验室-兰州理工大学有色金属先进加工与再利用国家重点实验室共同资助培育项目,以及兰州理工大学红柳优秀基金、红柳杰出人才项目。
二、学术专著:
[1] 撰写:Polyethersulfone、Polyethersulfone Membrane、Polypropylene、Polypropylene Membrane,《Encyclopedia of Membranes》, Editors: E. Droli, L. Giorno, Springer 2015.
[2] 撰写:Chapter 10: Polyaniline based composites and nanocomposites,《Polyaniline: Blends, Composites and Nanocomposites》, Editor: Alexandru Mihai Grumezescu, Elsevier 2016.
[3] 撰写:Chapter 1: Polyethersulfone (PES) fiber, Volume 5: Polymer Fibers,《Composites in Biomedical Engineering (multi volume SET I-IX)》, Editor: Ashutosh Tiwari, Elsevier 2017.
[4] 主编:《Advanced Nanomaterials for Energy Storage and Power Battery》, Elsevier 2019.
三、代表性学术论文:
[1] Modification of polyethersulfone membrane-A review of methods, Progress in Materials Science 2013, 58(1): 76-150.
[2] Metal-Organic-Framework-Derived Nanostructures as Multifaceted Electrodes in Metal-Sulfur Batteries, Advanced Materials, 2021, 33(27): 2008784.
[3] Nanoribbons Self-Assembled by Rapid Cooling Method Towards High-Capacity Vanadium Nitride Anode Materials, Advanced Energy Materials 2022, 12(13): 2103158.
[4] Sulfur-Containing Polymer Cathode Materials: From Energy Storage Mechanism to Energy Density, InfoMat 2022, 4(8): e12319.
[5] Design Strategies of 3D Carbon-based Electrodes for Charge/Ion Transport in Lithium Ion Battery and Sodium Ion Battery. Advanced Functional Materials 2021: 2010041.
[6] Energy Storage Mechanism of Vanadium Nitride via Intercalating Different Atomic Radius for Expanding Interplanar Spacing, Energy & Environmental Materials 2022 (5): 565-571.
[7] Surfactant Induced Self-Assembly to Prepare Vanadium Nitride/N, S Co-doped Carbon as High-Capacitance Anode Materials, Chemical Communications 2021, 57, 10246-10249.
[8] Integrating Supercapacitor with Sodium Hyaluronate based Hydrogel as A Novel All-In-One Wound Dressing: Self-Powered Electronic Stimulation, Chemical Engineering Journal 2023, 452: 139491.
[9] A New Strategy Based on Multi-Phase Polymeric Material System to Improve the Electrochemical Behavior of Supercapacitor Negative Electrode, Nano-Micro Letters 2018, 10: 63.
[10] 3D Layered Nanostructure of Vanadium Nitrides Quantum Dots@Graphene Anode Materials via In-Situ Redox Reaction Strategy, Chemical Engineering Journal 2021, 417: 129267.
[11] All-In-One Energy Storage Devices Supported and Interfacially Cross-linked by Gel Polymeric Electrolyte, Energy Storage Materials 2021, 37: 587-597.
[12] Cobalt-based Double Catalytic Sites on Mesoporous Carbon as Reversible Polysulfide Catalysts for Fast-Kinetic Li-S Batteries, ACS Applied Materials & Interfaces 2021, 13(43), 51174–51185.
[13] Cyclic Stability of Supercapacitors: Materials, Energy Storage Mechanism, Test Methods, and Device, Journal of Materials Chemistry A 2021, 9, 24094-24147.
[14] Conductive 3D networks in a 2D layer for high performance ultrafiltration membrane with high flux-retention and robust cyclic stability, Journal of Membrane Science 2021, 640: 119781.
[15] Chemically building interpenetrating polymeric networks of bi-crosslinked hydrogel macromolecules for membrane supercapacitors. Carbohydrate Polymers 2021, 255: 117346.
[16] Hydrated halide clusters on electrode materials for aqueous supercapacitor. Journal of Power Sources 2021, 491: 229612.
[17] Vanadium Nitride for aqueous Supercapacitors: A Topic Review, Journal of Materials Chemistry A 2020, 8: 8218-8233.
[18] Dual High-Conductivity Networks via Importing a Polymeric Gel Electrolyte into the Electrode Bulk, ACS Applied Materials & Interfaces 2020, 12(37): 41239-41249.
[19] Fundamental Triangular Interaction of Electron Trajectory Deviation and P-N Junction to Promote Redox Reactions for the High-Energy-Density Electrode, ACS Applied Materials & Interfaces 2020, 12(26): 29404-29413.
[20] Electrolyte-philic Electrode Material with Functional Polymer Brush, ACS Applied Materials & Interfaces 2019, 11(17): 16087-16095.