55. Cellulose Tailored Anatase TiO2 Nanospindles in Three-Dimensional Graphene Composites for High-Performance Supercapacitors
writer:Y. Ding, W. Bai, J. Sun, Y.u Wu, M. A. Memon, C. Wang, C. Liu,* Y. Huang, J. Geng,*
keywords:Anatase Tio2, Shape-controlled synthesis, Cellulose, Three-dimensional graphene composites, Supercapacitors
source:期刊
specific source:ACS Appl. Mater. Interfaces 2016, 8, 12165–12175
Issue time:2016年
The morphologies of transition metal oxides have decisive impact on the performance of their applications. Here, we report a new and facile strategy forin situ preparation of anatase TiO2 nanospindles in three-dimensional reduced graphene oxide (RGO), structure (3D TiO2@RGO) using cellulose as both an intermediate agent eliminating the negative effect of graphene oxide (GO) on the growth of TiO2 crystals and as a structure-directing agent for the shape-controlled synthesis of TiO2 crystals. High-resolution transmission electron microscopy and X-ray diffractometer analysis indicated that the spindle shape of TiO2 crystals was formed through the restriction of the growth of high energy {010} facets due to preferential adsorption of cellulose on these facets. Because of the 3D structure of the composite, the large aspect ratio of the TiO2 nanospindles, and the exposed high-energy {010} facets of the TiO2 crystals, the 3D TiO2@RGO(Ce 1.7) exhibited excellent capacitive performance as an electrode material for supercapacitors, with a high specific capacitance (ca. 397 F g(-1)), a high energy density (55.7 Wh kg(-1)), and a high power density (1327 W kg(-1)) on the basis of the masses of RGO and TiO2. These levels of capacitive performance far exceed those of previously reported TiO2-based composites.