【Polymers】Iminopyridine-Based Cobalt(II) and Nickel(II) Complexes: Synthesis, Characterization, and Their Catalytic Behaviors for 1,3-Butadiene Polymerization
writer:Quanquan Dai, Xiangyu Jia, Feng Yang, Chenxi Bai * , Yanming Hu * and Xuequan Zhang
keywords:iminopyridine; cobalt; nickel; 1,3-butadiene; polybutadiene
source:期刊
Issue time:2016年
A series of iminopyridine ligated Co(II) (1a–7a) and Ni(II) (1b–7b) complexes were synthesized. The structures of complexes 3a, 4a, 5a, 7a, 5b, and 6b were determined by X-ray crystallographic analyses. Complex 3a formed a chloro-bridged dimer, whereas 4a, 5a, and 7a, having a substituent (4a, 5a: CH3; 7a: Br) at the 6-position of pyridine, producing the solid structures with a single ligand coordinated to the central metal. The nickel atom in complex 5b features distorted trigonal-bipyramidal geometry with one THF molecule ligating to the metal center. All the complexes activated by ethylaluminum sesquichloride (EASC) were evaluated in 1,3-butadiene polymerization. The catalytic activity and selectivity were significantly influenced by the ligand structure and central metal. Comparing with the nickel complexes, the cobalt complexes exhibited higher catalytic activity and cis-1,4-selectivity. For both the cobalt and nickel complexes, the aldimine-based complexes showed higher catalyst activity than their ketimine counterparts. View Full-Text