搜索:  
同济大学陈涛教授团队在光增强型固态超级电容器方面取得新进展
2019-11-02  来源:高分子科技

  超级电容器因其功率密度大、寿命长、制备方法简单等优点引起人们的广泛关注,且能通过电极材料或电解质的功能化,实现具有智能响应性的柔性器件。受限于现有电极材料或电解质,目前,有关光响应(或光增强)型超级电容器的研究较少。石墨烯或碳纳米管具有优异的光电导和光热效应,普遍作为电极材料应用于超级电容器中,但基于物理混合的碳纳米管/石墨烯的超级电容器通常表现出有限的光响应性。因此,通过纳米碳基电极材料的结构设计有望实现光响应(甚至光增强)型超级电容器的构筑。

  基于此,同济大学陈涛教授团队通过对石墨烯/碳纳米管杂化材料的结构设计,通过化学气相沉积法直接从石墨烯表面生长碳纳米管阵列制备了一种无缝连接的石墨烯/碳纳米管(G/CNTs)杂化材料(图1)。同时,开发了一种简单的溶液法以负载生长碳纳米管所需的催化剂(Fe/Al2O3),代替传统的能耗高、工艺复杂的电子束蒸发镀膜法。

图1.(a)无缝连接G/CNTs杂化材料的制备过程示意图。石墨烯表面所形成的催化剂纳米颗粒的SEM照片(b)和元素分布图(c)。

  通过上述方法合成的G/CNTs杂化材料中(图2),碳纳米管直接从石墨烯片层上进一步生长,形成了无缝连接的结构,这种独特的连接方式不仅能有效提高石墨烯和碳纳米管间的电荷传输,还使其具有优异的光电导和光热性能。另外,所形成的三维自支撑结构能够有效避免石墨烯及碳纳米管的团聚,为电化学能量储存提供足够多的表面积。            

图2.(a)石墨烯泡沫的SEM照片。(b)G/CNTs的SEM照片。(c-d)不同放大倍数下的G/CNTs横截面SEM照片。(e-f)G/CNTs结合部位的TEM照片。

  以上述无缝连接的G/CNTs复合材料作为电极,进一步发展了对称型全固态超级电容器。在石墨烯和碳纳米管的协同光电导及光热效应作用下,所发展的超级电容器表现出明显的光响应性,器件的串联电阻随光照强度的增加而降低,而比容量则随光照强度的增强而增加(图3)。在一个太阳光照下(1.0 kW m-2),该超级电容器的比容量是在无光照条件下的3倍,表现出优异的光增强性能。基于该无缝连接的G/CNTs杂化材料,还可进一步获得具有优异柔性和可拉伸性的超级电容器。该工作对多功能能量储存器件领域的研究提供了新的思路。

图3.(a)超级电容器的结构示意图。(b)光响应(增强)超级电容器的示意图。(c-e)不同光照强度下超级电容器的循环伏安曲线(c),恒电流充放电曲线(d)和Nyquist图(e)。(f)超级电容器的比电容和串联电阻随光照强度的变化。

  以上成果近期发表在英国皇家化学会Journal of Materials Chemistry A(DOI:10.1039/C9TA10073C)上。论文的第一作者为同济大学硕士生陈子林,通讯作者为同济大学陈涛教授。该项工作得到了国家自然科学基金(21774094,51702237,51973159)、上海市“青年科技启明星计划”、上海市“青年拔尖人才计划”等的基金支持。

  论文链接:https://pubs.rsc.org/en/content/articlehtml/2019/ta/c9ta10073c

版权与免责声明:中国聚合物网原创文章。刊物或媒体如需转载,请联系邮箱:info@polymer.cn,并请注明出处。
(责任编辑:xu)
】【打印】【关闭

诚邀关注高分子科技

更多>>最新资讯
更多>>科教新闻