曲音波介绍,通过引入生物炼制概念,在预处理阶段将玉米芯中纤维素、半纤维素、木素相互束缚的坚固结构变松散,并将半纤维素部分转化为低聚木糖、木糖醇等高附加值产品,避开了生物质资源中的半纤维素部分转化乙醇效率低的难题。以木糖渣作为主要培养基成分就地生产出的粗纤维素酶发酵液,避开了之前酶制剂的加工、运输环节,大幅度降低了纤维素乙醇生产的用酶成本。剩余的纤维素木糖渣不但可以生产乙醇等较高值的化工产品,其残渣还可以制成木素产品,发酵废液还可以生产沼气发电,形成了多元化的合理产品结构,可谓是“吃干榨尽”。
此外,曲音波等人通过采用基因组重组、pH分段控制等技术,克服了木糖渣作为新工业原料带来的培养基营养成分欠缺、产品乙醇浓度低等一系列技术难题,集成发明了成套生产工艺技术。
据他介绍,基因组重组技术是用原生质体融合—重组方法,将不同突变株的有利突变重组起来而删除有害突变的新技术,用于改进菌株生产性能;pH分段控制则是根据菌株在不同生长阶段的环境要求不同,来优化生产过程,提高产酶水平。目前,使用该技术的纤维素乙醇生产成本已接近粮食乙醇。
据了解,该技术曾获2011年度国家技术发明二等奖。在该技术基础上,山东龙力公司率先在国际上建成了3000吨/年玉米芯纤维素乙醇的中试装置和万吨级示范装置,5万吨/年纤维燃料乙醇项目也于近日获得了国家发展改革委核准。
据了解,目前国内外企业纤维素乙醇的原料、预处理所占成本在总成本中的比例过高,且原料中的各种成分并未被充分利用,无法实现价值最大化。这是纤维素乙醇尚未产业化的主要原因之一。
曲音波表示,他最终的目标是希望能够实现生物质原料(淀粉、糖类、纤维素、木素等)的全部利用,产品(燃料、大宗化学品和精细化学品、药品、饲料、塑料等)的多元化,形成生物质炼制巨型行业,部分替代不可再生的一次性矿产资源。