随着器件集成度的提高和使用环境的日益复杂,界面接触差,应力集中的热界面材料在实际应用中极易发生不规则变形、热膨胀和挤压以及振动,造成较大的温度梯度和局部温度过热,导致界面层分离、热控制失效和工程失效。因此,为确保散热效果,设计能够自动适应应用环境与非平整、粗糙和动态的接触表面实现牢固贴合接触,在不同的温度场中保持良好的快速热疏导能力的新型快速自修复弹性导热材料是解决这一问题的重要策略之一。此外,除了高回弹性外,维持界面的黏附性是降低界面热阻、提高k值的另一有效措施。具有强黏附力的导热材料不仅可以改善导热填料与聚合物之间的界面接触,保持导热材料的机械完整性和稳定性,而且可以有效避免传热界面膨胀时新型导热材料的脱落。根据之前的研究,在选择取向高导热填料的基础上,通过控制聚合物分子间相互作用、软硬段的类型以及交联结构的分布,优化分子间氢键与强交联的比例,实现可逆作用与强交联的互补,获得具有连续立体网络的聚合物,对于设计具有强黏附力和高弹性的新型自修复导热复合材料具有重要意义。
近日,天津大学封伟教授团队使用乙烯基封端的聚二甲基硅氧烷(PDMS)作为交联增强剂,聚2-[[(丁胺基)羰基]氧基]乙酯(PBA)作为软段,通过优化分子间的高密度氢键相互作用和分子间的强交联的比例,合成了一种具有高黏附力和快速完全自修复的聚合物材料(PBA–PDMS)。然后,基于力-热耦合设计思想,以褶皱石墨烯(FGf)为导热填料,在真空条件下采用物理浸渍法制备了高回弹、高导热、强界面黏附性的快速自修复的导热复合材料(PBA–PDMS/FGf)(图1)。结合分子模拟及测试,聚合物在室温下放置2 h可以实现结构及力学性能的完全自修复(图2)。复合材料的初始面外导热系数为13 ± 0.2 W·m-1·K-1,平面内导热系数为8.3 ± 0.2 W·m-1·K-1。同时,PBA分子间氢键可在材料损伤处实现分子链段的重组,抑制和修复材料的裂纹和分层,实现导热通道和碳骨架的重新构建,室温下修复2 h,PBA–PDMS/FGf复合材料的导热性能和机械性能可恢复到初始状态(图3,图4),并在机械手传热验证了这一导热自修复性能。PBA–PDMS/FGf材料的设计和应用,实现了自修复与黏弹性的完美结合,并诠释了材料力学性能及导热性能的修复机理(图5)。
- 国科温研院陈强研究员/南工孙庚志教授 AFM: 提出基于界面点击化学构建超耐久性裂纹式传感器的新策略 2023-03-28
- 陕科大王学川教授/党旭岗副教授 Small:盲鳗粘液启发的高拉伸自修复超分子水凝胶用于多功能自供电可穿戴设备 2025-01-20
- 河北地质大学卢昶雨、江苏科技大学郭峰/施伟龙课题组 Small:基于黑色g-C3N4纳米片的光热自修复防污防腐涂层的构筑 2025-01-15
- 南林陈楚楚课题组 CEJ:高强韧、自修复、可回收与环境稳定的木基低共熔凝胶绿色合成方法 2025-01-08
- 林科院储富祥、王基夫/南林大勇强 AFM:无液体、高回弹、抗冻纤维素共晶凝胶构筑新策略 2023-12-18
- 南京大学张秋红、贾叙东团队《Adv. Funct. Mater.》:用于人机交互系统的低滞后“分子滑轮”离子凝胶 2023-04-23
- 东华大学武培怡/孙胜童团队《Adv. Mater.》:模拟人体脂肪组织构筑高阻尼自修复离子皮肤 2023-02-08