聚乙烯树脂是通用合成树脂中产量最大的品种,主要包括低密度聚乙烯(LDPE)、线性低密度聚乙烯(LLDPE)、高密度聚乙烯(HDPE)以及一些具有特殊性能的产品,其特点是价格便宜,性能较好,可广泛地应用于工业、农业、包装以及日常工业中,在塑料工业中占有举足轻重的地位。
1 世界聚乙烯工业现状
上世纪90年代,世界聚乙烯工业经历了快速发展时期,产能平均增幅达到约6.0%,特别是亚洲和中东地区石化工业的发展,为世界聚乙烯工业的发展带来了机遇。2004年世界聚乙烯树脂的总生产能力约为7165万吨,消费量约为6079万吨,比2003年增长约6.6%,除非洲、亚洲、大洋州、中南美和西欧有缺口外,其它地区基本上是产能大于需求。预计到2008年,世界聚乙烯树脂的总生产能力将达到约8175万吨,消费量将达到约7108万吨,供需基本平衡。其中中东地区是生产能力增长最快的地区,年均增长幅度将达到约11.4%,到2008年生产能力将达到990万吨,约占世界生产能力总增长量的29%。需求量增长最快的地区为亚洲,年均增长幅度将达到约6.8%,约占世界需求总增量的46%。2003年世界经济开始复苏,特别是美国和西欧的经济复苏,带动了世界聚乙烯消费的增长。同时中国经济的高速增长,使其国内对聚乙烯的需求仍保持良好的态势。由于世界化工行业开始进入新的景气周期,国际聚乙烯价格在2003年出现大幅度上涨,估计这种景气状态将持续到2006年。
世界聚乙烯工业正在发生重大的变化,生产能力越来越集中在少数几个大的生产厂商手中,企业重组继续进行,继道化学公司并购联碳公司,埃克森公司和美孚公司完成合并,巴斯夫公司和壳牌公司把Elence公司、Targor公司和Montell公司合并成立巴塞尔(Basell),雪佛龙和菲利普公司合并成立雪佛龙-菲利普公司后,日本的聚烯烃企业也进行了重组,而韩国三星石化同道达尔芬纳埃尔夫公司建立了合资企业,使得世界聚乙烯的生产能力更加集中。目前,世界前十位聚乙烯生产企业的总生产能力已经占到世界聚乙烯总生产能力的约45%,其中生产能力位于前两位的道化学公司和埃克森美孚公司的生产能力均超过了600万吨/年。
聚乙烯一直是世界需求量最大的通用塑料,从近十年的发展情况来看,尽管需求增长低于聚丙烯,但其年均增长率仍达到了约6.3%。聚乙烯树脂需求的快速增长得益于以下几个方面,一是由于经济的增长和开辟新的应用领域;二是世界包装产品的变革,使得聚乙烯薄膜在几乎所有产品的包装物中得到广泛应用。同时HDPE在技术上的突破使得其在管材、中空等领域中得到广泛的应用。根据预测,在未来5年内世界聚乙烯树脂的需求仍将保持较高的增幅,年均增长率将达到约4.5%。
未来聚乙烯树脂的应用领域仍将集中在包装、农业、建筑和电线电缆等方面。其中薄膜仍是聚乙烯的最大用途。未来的聚乙烯薄膜将更加专业化、扭结包装膜、收缩包装膜、缠绕包装膜、贴体包装膜、充气包装膜、高阻透性膜(阻气、阻光等)、高耐热性膜、选择渗透膜、保鲜膜、抗菌膜等产品的应用比例将逐步增大。茂金属催化剂于1991年在美国实现工业化应用后,聚烯烃催化剂已经发展到第3代。单活性中心(SSC)和茂金属催化剂技术的发展,进一步推动了聚乙烯生产过程和聚乙烯产品的技术进步。
双峰技术使得HDPE产品在薄膜和管材领域得到广泛应用。双峰技术于20年前打开了高密度聚乙烯薄膜市场,现在其在管道应用中又获得了巨大的发展。双峰聚乙烯很好地解决了产品既具有良好的力学性能,又便于加工这一矛盾,在薄膜、建材、管道、吹塑成型用料、注塑成型用料、电线电缆等领域均有广泛的应用。双峰聚乙烯最近的发展是推出了PE100产品,该产品具有更高的应力和抗裂性能,可生产厚度较薄的管道,而能承受相同的操作压力,从而降低了生产成本。PE100可占领PVC管道的某些市场和许多钢管市场,尤其适用于天然气和石油管道场合,其抗磨蚀性好,抗腐蚀性也优于钢铁材质。
LDPE高透明牌号将成为包装领域的新亮点。LDPE高透明产品是通过改变聚合压力和调整助剂配方实现的。从目前市场应用状况看,高透明LDPE产品很受市场青睐,根据美国市场调查机构分析,使用高透明产品包装的各类食品的销售量比普通包装的高约30%,未来高透明LDPE薄膜将越来越多地应用于面包、水果、熟食等产品上。
茂金属聚乙烯的应用将不断扩大。根据统计,目前世界茂金属和单活性中心SSC催化剂生产的聚乙烯约为150万吨/年,其中用于食品包装约占36%,非食品包装约占47%,其他方面(医药、汽车和建筑等)约占17%。茂金属LLDPE(mLLDPE)现在约占LLDPE总消费量的15%,预计到2010年这一比例将达到约22%。今后mLLDPE的年均消费增长率将高于LLDPE,达到约15%。因为mLLDPE产品有更好的性能,许多发达国家纷纷采用mLLDPE替代常规的LLDPE。根据预测,在未来发达国家LLDPE产量增长的近一半将来自于mLLDPE。2007年世界LLDPE的总需求量将达到约1830万吨,其中mLLDPE的消费量将达到约280万吨。埃克森美孚公司在北美推出极低密度(0.912g/cm3)茂金属聚乙烯(mPE),目标是针对食品和工业包装市场,该产品有很好的韧度和强度,其落锤冲击强度是常规极低密度聚乙烯(VLDPE)的2倍以上,而密封温度仅为85℃。
涂层用LDPE市场前景广阔。聚乙烯树脂涂层的生产主要集中在复合彩印领域。随着人们对产品包装的重视,包装工业的发展极大地带动了聚乙烯涂层的增长,且可加工品种不断增加,已应用到纸板、聚酯膜、玻璃纸、聚丙烯膜、聚丙烯编织袋、胶带、布等各种材质;新品如离型纸、食品包装制品、建筑用水泥包装等,其中离型纸作为一种新型材料广泛应用于商标、标签、胶粘带及广告纸等方面。
2 生产工艺研究新进展
长期以来,在聚乙烯生产工艺技术领域,一直是多种工艺并存,各展其长。目前并存的液相法工艺有Nova公司的中压法工艺、Dow化学公司的低压冷却法工艺和DSM公司的低压绝热工艺。应用最为广泛的浆液法工艺是科诺科菲利浦斯、索尔维公司的环管工艺和赫斯特、日产化学、三井化学的搅拌釜工艺。气相法工艺主要有Univation公司的Unipol工艺、BP公司的Innovene工艺和Basell公司的Spherilene工艺。近年来,气相法由于流程较短、投资较低等特点发展较快,目前的生产能力约占世界聚乙烯总生产能力的34%,新建的LLDPE装置近70%采用气相法技术。近年来,在各工艺技术并存的同时,新技术不断涌现。其中冷凝及超冷凝技术、不造粒技术、共聚技术、双峰技术、超临界烯烃聚合技术以及反应器新配置等新技术的开发,极大地促进了世界聚乙烯工业的发展。
2.1 冷凝及超冷凝技术
冷凝及超冷凝技术是UCC、Exxon化学和BP公司开发的,是指在一般的气相法PE流化床反应器工艺的基础上,使反应的聚合热由循环气体的温升和冷凝液体的蒸发潜热共同带出反应器,从而提高反应器的时空产率和循环气撤热的一种技术。冷凝操作可以根据生产需要随时在线进行切换,使装置可以在投资不需要增加太大的情况下大幅度提高装置的生产能力,装置操作的弹性大,使得该技术具有无可比拟的优越性。通过采用该技术不仅将单线最大生产能力从22.5万吨/年提高到45万吨/年以上,而且进一步降低了单位产品的投资和操作费用,操作稳定性也得到了进一步提高。国外已有大量采用冷凝和超冷凝技术对气相法PE装置扩能的实绩,最高扩能达到原有能力的2.5倍以上。我国扬子石化公司、天津石化公司、广州石化公司以及吉林石化公司、中原石化有限责任公司、新疆独山子石化公司等的聚乙烯装置采用该技术也取得扩能成功。
UCC冷凝态技术的要点之一是将进入混气室的循环气体分成两股,第一股气流直接通过圆盘中心的开孔上升,第二股气流则沿着封头的壁面上升,目的是阻止冷凝液在封头下部的壁面上升,使夹带的冷凝液迅速均匀地雾化并悬浮在气流中,再通过气体分布板进人流化床层。UCC的冷凝态工艺由于允许的冷凝液含量较低,使得提高反应器生产能力的程度也相对较低。但其主要优点在于除采用新型的预分布器以外,几乎不需要对反应器进行任何改造,所以在Unipol生产装置上被广泛采用。Exxon化学公司在UCC公司诱导冷凝技术的基础上进一步开发了超冷凝技术。Exxon化学公司发现,保证反应器内流化状态稳定的必要条件是必须保持流化床密度与树脂堆积密度之比(FBD/SBD)大于0.59,对确定的催化剂和产品牌号来说,SBD是一定的,而FBD则与循环气组成有关,随循环气中重组分烃类冷凝剂含量的增加而下降,当降到某一极限值时流化状态被破坏,无法继续稳定操作,虽然FBD与循环气中的凝液量无关,但由于循环气组分中冷凝剂的含量多少直接影响到循环气露点高低及反应器入口的凝液量,因此FBD/SBD大于0.59这一界限就反映了超冷凝技术在理论上所能达到的最大能力限度。根据这一发现,Exxon化学公司通过监测FBD/SBD进一步将凝液量提高到35%,实现了扩能1.5倍的目标(尚未达到极限)。
BP公司结合其流化床聚合工艺开发了有别于UCC的新冷凝技术。其技术特征是直接向流化床喷射雾化了的冷凝液。1995年BP公司宣布了它的所谓“高产工艺”(即冷凝工艺),即在聚乙烯气相工艺中引进液体循环,提高排热量、增加产能。在该工艺中,循环气体经冷却器冷却后,冷凝液体和未冷凝气体分离,分别进入流化床反应器,未凝气体按传统方式返回反应器。冷凝液经过特殊设计的喷嘴雾化后,直接送人流化床进行蒸发换热。虽然这种冷凝操作工艺增加了一些辅助设备和操作步骤,但可获得较好的雾化和换热效果,并且工艺操作调节的灵活性大。BP公司还称其冷凝工艺可以和茂金属催化剂结合使用。
诱导冷凝和超冷凝技术所使用的惰性冷凝剂可以是异戊烷或己烷,选择的依据主要取决于原料来源和价格。冷凝操作的关键是如何进入和退出冷凝状态。虽然冷凝模式确实有助于消除静电、改善操作,但当循环气中的凝液量达到2%左右时却很容易发生结块,因此进入和退出冷凝状态时必须采用适当的操作技术,迅速跨过这个“门槛”。
采用诱导冷凝或超冷凝技术扩能,除原有反应器保持不变外,反应系统的主要设备均可保持不变。由于循环气的体积流量未变,因此无需更换循环气压缩机(但循环气中增加了重组分烃,则会导致电机负荷增加),至于循环气冷却器,虽然其热负荷随生产能力扩大而成正比例增加,但由于在冷却器中发生了冷凝过程,且循环气组分中导热系数相对高的组分增多,这些都使作为控制热阻的循环气侧的给热系数增加,因此在一定的扩能范围内循环气冷却器也不需更换。反应系统这三大主要设备的效率大大提高,使原来占装置界区内硬件投资约30%的反应系统费用显著降低,同时由于循环气压缩机所消耗的电能也大幅度减少,因而诱导冷凝技术和超冷凝技术与常规气相法相比,不仅节省投资,而且可降低操作费用。
2.2 不造粒技术
随着催化剂技术的进步,现在已出现了直接由聚合釜中制得无需进一步造粒的球形PE树脂的技术。直接生产不需造粒树脂,不但能省去大量耗能的挤出造粒等步骤,而且从反应器中得到的低结晶产品不发生形态变化,这样有利于缩短加工周期、节省加工能量。Montell公司的Spherilene工艺采用负载于MgCl2上的钛系催化剂,由反应器直接生产出密度为0.890-0.970g/cm3的PE球形颗粒,产品包括LDPE、LLDPE和HDPE,甚至在不降低装置生产能力的情况下生产VLDPE和ULDPE。由于省去了造粒工序,可使装置投资减少20%。该工艺把淤浆法预聚技术与气相流化床技术结合起来,反应先在一个小环管反应器中进行,然后预聚物连续通过一个或两个短停留时间的气相流化床,两个气相流化床中可控制及维持完全独立的气体组成,温度和压力可独立控制,实现了产品设计更大的灵活性。
Spherilen工艺的核心是其催化剂技术。该技术使用的球形钛系催化剂在物理和化学结构上显示出三维空间的特点,可人为地控制载体本身的物理化学性能,并控制活性中心在载体上的分布。其原理为:通过控制载体的孔隙率,使活性中心优先分布在表面,致使单体扩散能力受限,这样在聚合过程中就可以得到层状或空心的聚合物颗粒,而颗粒本身又成为一个反应器,引入其中的其它单体,则可在中空颗粒内部的活性中心作用下聚合或共聚,从而生产出分散非常均匀的聚合共混物或称聚合物合金。采用不同的单体配方,可得到均聚物、共聚物、弹性体以及其它功能性聚合物。
2.3 共聚技术
采用共聚技术对PE进行改性近年来得到长足的发展。低压PE工艺的明显进展之一就是HDPE和LLDPE的共聚单体从1-丁烯向高级α-烯烃(1-己烯、1-辛烯和4-甲基-1-戊烯)转变。一般认为长链单体共聚的LLDPE比短链单体共聚的树脂具有更高的整体韧性和强度,且长链单体对LLDPE树脂性能改善的峰值处于1-己烯与1-辛烯之间,而1-辛烯共聚LLDPE韧性最好。随着新型具有良好共聚性能催化剂的开发成功,以及冷凝态和超冷凝态进料技术的应用,许多公司已能够经济、有效地生产高级α-烯烃共聚LLDPE树脂。如Mobil公司在气相流化床反应器中采用茂金属催化剂,在与Z-N催化剂相同的条件下,用1-己烯共聚生产超强LLDPE,其透明度甚至好于LDPE,雾度约为6%,而一般LLDPE雾度约为16%,而冲击强度高达7.85N。Dow公司的Dowlex辛烯共聚LLDPE同样具有类似的性能。
2.4 反应器新配置
最近,开发大型管式反应器是生产LDPE的趋势,釜式工艺变得越来越过时,但是2台釜式反应器串联操作技术的开发,使釜式反应器工艺的生产费用可与管式反应器竞争。住友化学在这种反应器配置方面较有经验,其不仅使用这种配置方式在日本生产LDPE,而且将该技术转让给巴西OPPPtroquimica公司。2台釜式反应器串联可使乙烯生成PE的转化率至少提高35%,装置产量提高达50%,同时生产同量PE的电力消耗降低,从而生产每吨PE的可变生产费用可降低约25%。
2.5 双峰技术
双峰聚乙烯是指相对分子质量分布曲线呈现两个峰值的聚乙烯树脂,双峰树脂可以在获得优越物理性能的同时改善其加工性能。目前,生产双峰树脂的方法主要有熔融共混、反应器串联、在单一反应器中使用双金属催化剂或混合催化剂等方法。目前的生产商主要采用串联反应器方法,主要代表有Univation公司的UnipolⅡ工艺、Basell公司反应器串联的气相Spherilene工艺、Borealis公司的Borstar工艺、Phillips、Mitsui、Basell、Solvay等开发的淤浆法串联反应器生产工艺等。单反应器法是通过开发含有多个活性中心的催化剂体系,在一个反应器内合成双峰相对分子质量分布的聚乙烯树脂。单反应器法能够降低投资成本,但催化剂费用较高,开发难度大,而且产品性能会受到一定的限制。Univation公司采用单反应器,成功试产了双峰HDPE。
Boreails公司开发出生产双峰聚乙烯的独特Borstar工艺,1995年在芬兰首次建成一套20万吨/年的生产装置并投入运行,可生产HDPE、LLDPE、MDPE等多种牌号的产品。其生产设备主要由独特的淤浆环管反应器和特制的流化床气相反应器串联而成,整个工艺过程高度灵活,PE分子质量和分子质量分布易于控制。采用齐格勒-纳塔催化剂,产品密度范围为 918-970 kg/m3,熔融速率范围为 0.02-100 g/10 min。在环管反应器中使用超临界丙烷作为稀释剂,可以生产构成双峰聚乙烯中低分子质量峰的低分子质量的聚合物,而在气相反应器内生产出构成高分子质量峰的高分子质量的产品,并可以根据要求调节分子质量的分布。产品具有良好的机械性能和加工性能,能适应通用设备加工。
Borstar工艺只采用一种催化剂,在环管反应器内在催化剂的活性中心上生成低分子质量的聚合物,而在气相反应器中可在同一催化剂颗粒上再生成高分子质量的聚合物,从而生成双峰聚乙烯。这种聚乙烯的优点在于它既含有很短的聚合物分子链,又含有很长的聚合物分子链,俗称“连接分子”。正是这种“接分子”,大大地提高了产品机械强度。在熔融状态下,“连接分子”在小分子链的作用下,长分子链的部分链段开始舒展,从而改善了长分子链的流动性能,而短分子链起到分子间的润滑作用,改善了加工性能。
北星双峰聚乙烯工艺采用两个反应器单独操作,根据需要来控制分子质量的分布。由于最终产品的熔融速率是一定的,两台反应器之间的产率比同样可以影响分子质量分布的宽度。假设环管反应器生产的低分子质量聚合物和气相反应器生产的高分子质量聚合物的产率比为44/56,低分子质量部分的分子质量保持不变,那么,如果要降低高分子质量部分的含量(如产率比为46/54),为了保持最终产品的分子质量一定,则要提高高分子质量部分的分子质量,这意味着最终产品的分子质量分布变宽。控制分子质量分布的另一个方法是在环管和气相反应器中调整熔体流动速率,假如最终产品的分子质量一定,如果分子质量分布太窄,则可以提高环管反应器中融体流动速率而降低气相反应器中融体流动速率,即降低环管反应产品的分子质量,提高气相反应产品的分子质量。如果聚合物在加工过程中出现烟味,这说明小分子质量比例太多,可以通过适当降低环管反应器中生产的聚合物的融体流动速率(提高分子质量)来作出相应的改变。如果聚合物的熔体强度降低,这说明没有足够的大分子,可以通过降低气相反应器中的熔体流动速率即提高聚合物的分子质量来实现。
采用Borstar工艺生产的产品,分子量分布为双峰的LLDPE膜,具有优良的加工性和机械强度、撕裂强度、抗穿刺性;挤出覆膜级产品,可代替LDPE用于钢管涂层和纸张覆膜;吹模及产品,具有优异的耐环节应力开裂性和机械强度,特色产品为管材和电缆料。
Univation公司开发出Unipol-II生产工艺,增加第二个聚合反应器,生产LLDPE/HDPE双峰树脂,并建成了30万吨/年的2个反应器串联的气相法生产装置。高分子质量的共聚物在第一个反应器中生成,低相对分子质量共聚物在第二个反应器中生成。调节烯烃和氢的数量可以获得所需要的产品。第一步的共聚物和活性催化剂的混合物通过管线转移到第二个反应器系统中,管线位于脱气罐的底部,第二级反应器的循环气体作为输送介质。流化床反应的特点是停留时间长(3-4小时),以生产均一产品。聚合物产品定期排出,减压进入产品脱气和输送罐。从脱气罐出来的气体循环到反应器,从输送罐出来的聚合物进入料斗,用氮气吹出残留的烃类,用蒸汽使催化剂失活,料斗提供约3小时的停留时间,离开这一容器的气流被冷却并送往分离器共聚单体回收循环。轻组分送到排出气体回收系统,剩余的聚合物物料送往装置的加工部分。利用该工艺生产的易加工的双峰分布树脂,分子量可以在很大的自由度下调整,侧链分支长度、位置及共聚单体的位置均可有效地控制。
近年来,Univation公司致力于单反应器“双峰”HDPE技术的开发,已经开发出2种Prodigy“双峰”催化剂,并完成了5次工业试验。该技术采用经济的单一流化催化反应器和“双峰”催化剂,投资和生产成本比串联反应器节约约35%-40%,2002年10月,Univation公司采用此技术在一套16万吨/年的装置上运行了6天,生产了3000吨双峰HDPE薄膜树脂,其性能和加工性与目前工业上用串联反应器生产的高分子量双峰树脂的性能基本上一致,将于2004年实现工业化。由于该反应器生产双峰树脂主要依靠催化剂技术,很容易在现有的气相反应器中实施,因此有可能占据双峰树脂更大的市场份额。
此外,北欧化工公司用其专有的齐格勒-纳塔催化剂,在12万吨/年超临界浆液法环管反应器和气相反应器相结合的双反应器工艺中,生产“双峰”LLDPE和HDPE。
Equistar化工公司开发出其星(Star)单中心催化剂,并用这种催化剂成功地试生产HDPE、MDPE和LLDPE,其双峰聚合物是在双反应系统生产的,两反应器均使用淤浆法工艺。Equistar化工公司正在考虑用其“星”催化剂生产滚塑牌号、窄分子量分布和窄组成分布可提高机械性能和树脂的流动性,也在考虑用这种催化剂生产高韧性、高强度的薄膜牌号。
2.6 原位法技术
工业上生产LLDPE通常是在反应器中加入一定比例的α-烯烃(如-丁烯、1-己烯和1-辛烯)与乙烯进行共聚,这些单体均由乙烯齐聚生成。原位共聚是在反应体系中,以乙烯为唯一原料,利用齐聚催化剂实现乙烯齐聚生成共聚α-烯烃,然后利用共聚催化剂使之与乙烯共聚,制备LLDPE。采用原位共聚可以简化生产工艺,降低生产成本,利用这种方法还可以通过改变齐聚催化剂与共聚催化剂的组合、配比及加入方式、助催化剂用量等反应条件达到对聚合物进行分子剪裁和调控产品结构和性能的目的。
2.7 激光法技术
新近,意大利佛罗伦斯大学非线性光谱实验室的研究人员开发出一种以激光作催化剂,高压法生产结晶聚乙烯(PE)的新工艺。该工艺操作简单,聚合物收率高,结晶度高,适于大规模应用。一般情况下,烯烃可在极高压力下完成聚合,但这种条件下生成的聚合物多为高度分枝的非结晶材料。而采用激光催化的新工艺可在较低压力下完成聚合,并生成完全结晶的PE聚合物。反应中经过光吸收过程使分子形态发生变化,非常有利于生成线性高聚物。除可改善PE的性能外,这种新工艺还不需涉及催化剂的使用与后处理,从根本上解决了环境保护的问题。
3 结束语
聚乙烯生产新工艺的不断开发,将极大地促进了世界聚乙烯工业的发展。目前冷凝及超冷凝技术在我国聚乙烯的生产中得到了实际应用,并取得了很好的效果。今后应该重点加强双峰技术在我国聚乙烯生产中的应用,同时积极开发适合我国国情的新的生产工艺,以提高我国聚乙烯工业生产的整体技术水平,促进我国聚烯烃行业的快速发展。近年来,我国聚乙烯工业取得了很大的发展,但国内聚乙烯的市场占有率却只有约44%,专用树脂国内基本上都可以生产,市场占有率也较5年前有了大幅度的提高。未来几年虽然大规模的扩能将使国内产品占有率有所提高,但LLDPE品种单一将限制国内LLDPE年产量的扩大。另外在高密度聚乙烯中,国内专用料品种偏少也限制了其增长。因此在未来聚乙烯的开发、生产及销售中,国内企业应积极应对加入WTO后国内所面临的市场状况,,努力提高产品质量,提高聚乙烯的产品竞争力,使国产聚乙烯市场占有率得到进一步的提高。