Links
Contact Info.
  • Address:浙江省杭州市余杭区仓前街道余杭塘路2318号勤园16号楼516房间
  • Zip:311100
  • Tel:0571-28865114
  • Fax:
  • Email:ytzhu@hznu.edu.cn
Current Location :> Home > Publications > Text
Multicompartment micellar aggregates of linear ABC amphiphiles in solvents selective for the C block: a Monte Carlo simulation
writer:Yutian Zhu *, Haizhou Yu, Yongmei Wang, Jie Cui, Weixin Kong and Wei Jiang
keywords:Multicompartment micellar aggregates;linear ABC amphiphiles;solvents selective ;Monte Carlo simulation
source:期刊
Issue time:2012年
In the current study, we applied the Monte Carlo method to study the self-assembly of linear ABC amphiphiles composed of two solvophobic A and B blocks and a solvophilic C block. A great number of multicompartment micelles are discovered from the simulations and the detailed phase diagrams for the ABC amphiphiles with different block lengths are obtained. The simulation results reveal that the micellar structure is largely controlled by block length, solvent quality, and incompatibility between the different block types. When the B block is longer than or as same as the terminal A block, a rich variety of micellar structures can be formed from ABC amphiphiles. By adjusting the solvent quality or incompatibility between the different block types, multiple morphological transitions are observed. These morphological sequences are well explained and consistent with all the previous experimental and theoretical studies. Despite the complexity of the micellar structures and morphological transitions observed for the self-assembly of ABC amphiphiles, two important common features of the phase behavior are obtained. In general, the micellar structures obtained in the current study can be divided into zero-dimensional (sphere-like structures, including bumpy-surfaced spheres and sphere-on-sphere structures), one-dimensional (cylinder-like structures, including rod and ring structures), two-dimensional (layer-like structures, including disk, lamella and worm-like and hamburger structures) and three-dimensional (vesicle) structures. It is found that the micellar structures transform from low- to high- dimensional structures when the solvent quality for the solvophobic blocks is decreased. In contrast, the micellar structures transform from high- to low-dimensional structures as the incompatibility between different block types increases. Furthermore, several novel micellar structures, such as the CBABC five-layer vesicle, hamburger, CBA three-layer ring, wormlike shape with bumps on the sides, and disk shape with bumps on the edge, are predicted in this study. The formation pathways of ring, hamburger, and worm-like micelles are also examined and their formation mechanisms are well elucidated.