Fast and living ring-opening polymerization of L-lactide initiated with in-situ-generated calcium alkoxides
The ring-opening polymerization of l-lactide with calcium alkoxides generated in-situ from bis(tetrahydrofuran)calcium bis[bis(trimethylsilyl)amide] and 2-propanol are presented. The polymerization in THF at room temperature proceeds rapidly and in a living manner, giving poly(l-lactide)s of controlled molecular weight, low polydispersity, and tailored end-functionalities. Kinetic studies show the absence of an induction period and a pseudo-first order rate constant of 6.41 L mol(-)1 min(-)1, which is significantly higher than for related Y-5(mu-O)((OPr)-Pr-i)(1)3- or aluminum alkoxide-initiated polymerizations. The initiation involves a two-step process: (1) alcoholysis of bis(tetrahydrofuran)calcium bis[bis(trimethylsilyl)amide] to give the corresponding calcium alkoxide and (2) ring-opening of l-lactide via acyl-oxygen cleavage and insertion into the calcium-alkoxide bond. In the presence of excess alcohol, fast and reversible exchange between free alcohol molecules and coordinated alkoxide ligands takes place. This allows tuning of the poly(l-lactide) molecular weight over a wide range.