相关链接
联系方式
  • 通信地址:北京市昌平区高教园南三街9号北京航空航天大学实验七号楼409
  • 邮编:102206
  • 电话:---
  • 传真:
  • Email:zhengym@buaa.edu.cn
当前位置:> 首页 > 论文著作 > 正文
Fog Collection on a Bio-inspired Topological Alloy Net with Micro-/ Nanostructures
作者:Xin Li, Yufang Liu, Hu Zhou, Chunlei Gao, Diansen Li,* Yongping Hou,* and Yongmei Zheng*
关键字:fog collection
论文来源:期刊
具体来源:ACS Appl. Mater. Interfaces 2020, 12, 5065?5072
发表时间:2020年


Because of the scarcity of freshwater resources, fog collection as one of the effective methods to solve this issue has attracted widespread concern. Inspired by several natural creatures with the capability to collect water from fog, the bio-inspired water-harvesting materials have aroused considerable attention and been widely developed. Inspired by the directional water droplets transportation to the apex on both shorebirds beaks and wheat awns, the bio-inspired topological alloy net with a V-shaped asymmetric geometry in its mesh was designed for fog collecting. Then, micro-/nano-hierarchical structures were modified on the surface of the netting wire via the cathodic electrodeposition method. Thus, the bio-inspired topological alloy net with micro/nanostructures was fabricated successfully. Through the integration of topological geometry and surface microstructure, not only the water-collection rate is improved by efficient drainage along the designated pathways, but also the issue of mesh clogging is resolved. In addition, a theoretical model was constructed to reveal the mechanism, especially the resultant force arising from the V-shaped structure. This work provides insight into the development of novel fog-collecting materials, which has potential applications in other fifields, such as liquid transportation, microfluidics, and interface science.