郑咏梅 (博士生导师, 长聘教授)
北京航空航天大学,化学学院,仿生智能界面科学技术教育部重点实验室.
邮箱: zhengym@buaa.edu.cn
主页: http://www.zhengyongmei.polymer.cn.
概述
从事仿生微纳米梯度界面及其动态浸润性研究,研究表面的憎水性、防覆冰性、防霜性、及集水特性、液滴传输特性的调控。相关研究在Nature,Adv. Mater., Angew. Chem. Int. Ed., ACS Nano, Adv. Funct. Mater., Small, Nano Energy, Chemical engineering Journal 等国内外期刊发表了140余篇SCI论文,封面作14篇,其中论文获得顶级期刊论文(Nature, Nature Materials and Science等)的引用,引用11214次以上,H因子47。出版了英文专著三部(“Bioinspired wettability surfaces: Development in micro- and
nanostructures” in 2015;“Bioinspired Design of Materials Surfaces” in 2019;“Bioinspired Materials Surfaces” in 2024),合作多部。担任英国皇家化学学会会士(FRSC)、中国复合材料学理事会理事(CSCM),瑞典先进材料学会会士(FIAAM)、美国化学学会会员(ACS),中国化学学会高级会员(CCS),国际仿生工程学会会员(ISBE)、英国NANOSMAT学会Fellow会员、Bentham科学出版社中方代表(Ambassador)。Scientific Report期刊编委会成员。2016年获得仿生工程学会杰出贡献最高奖。2016年获得国际先进材料协会奖牌。2020 年、2021 年、2023年连续入选爱思唯尔高倍引学者榜首。2022 年担任专家“科学探索奖”提名人。2022年入选欧洲自然科学院(Europaische Akademie der Natunwissenschaften)院士(https://www.euro-akademie-der-naturwissenschaften.com/vollmitglieder-derfull-members-republic-of-china/dr-zheng-yongmei)。
。2014年研究工作得到皇家化学会-化学世界新闻网站的亮点宣传(https://www.chemistryworld.com/research/yongmei-zheng-spider-silk-and-butterfly-wings/7630.article)。个人主页: http://www.zhengyongmei.polymer.cn.
教育经历:
-
1983-1987年,吉林大学物理系,获得学士学位
-
1996-2000年,吉林工业大学,应用物理系,获得硕士学位
-
2000-2003年,吉林大学信息学院,获得博士学位
研究经历:
-
1987-1993,助教,吉林(工业)大学,应用物理系
-
1993-1999,讲师,吉林(工业)大学,应用物理系
-
1999-2006,副教授,吉林大学,物理教学与研究中心
-
2003-2006,中国科学院化学研究所,博士后研究,合作导师江雷研究员
-
2006-2008,副研究员,国家纳米科学研究中心,纳米生物医学与生物技术研究室
-
2008-2010,副教授,北京航空航天大学,化学与环境学院
-
2010-至今,教授,北京航空航天大学化学学院,仿生智能界面科学技术教育部重点实验室
社会兼职与服务:
-
国际期刊Scientific report编辑委员会成员
-
国际期刊MDPI Biomimetics,Section of Bioinspired Materials and Interfaces 主编(Editor-in-Chief)
-
客座编辑,曾组编专刊“Bioinspired Functional Materials” on Journal of Nanomaterials,
in Hindawi Publishing Corporation
-
国际期刊Nature, Nature Chemistry, Nature communication, ACS, RSC, Wiley, etc..等审稿人
-
中国复合材料学会理事会理事 (CSCM)
-
中国化学学会高级会员 (CCS)
-
美国化学学会会员 (ACS)
-
国际仿生工程学会会员 (ISBE)
-
英国皇家化学学会会士(FRSC)
-
瑞典先进材料协会会士 (FIAAM)
-
英国NANOSMAT学会Fellow会员
荣誉:
-
2016年获得国际仿生工程学会(ISBE)在仿生研究上的突出贡献奖
-
2016年获得国际先进材料协会(IAAM)在先进材料科学与技术上杰出贡献奖牌
-
2020 年入选爱思唯尔高倍引学者榜首
-
2021 年入选爱思唯尔高倍引学者榜首
-
2023 年入选爱思唯尔高倍引学者榜首
-
2022年入选欧洲自然科学院(Europaische Akademie der Natunwissenschaften)院士
研究兴趣:
揭示生物表面微纳米结构效应在浸润性调控的机理。探究生物表界面梯度微纳米结构效应引发的动态浸润性调控的原理和普遍规律。研究基于荷叶效应的仿生表面,及其表面的自清洁、极端憎水性;基于蝴蝶翅膀的仿生表面及其表面的定向液滴输运特性;基于蜘蛛丝表面重构的微纳米结构,及其表面的集水特性,液滴驱动特性等。探究新型的仿生界面的构建技术与方法,设计和构筑各种物理化学梯度,微纳米结构,及功能协同的表面,用以调控界面的特殊浸润性功能。开发微纳米材料在表面的防覆冰、防雾、低温憎水性、流体可控传输、集水特性等工程方面的研究。
主持课题:
-
2023-2026年国家自然科学基金面上项目:新型光热仿生多级次结构的设计与低湿度集水性能的研究
-
2017-2020年国家自然科学基金面上项目:仿生纳微斜角结构阵列的动态浸润低粘滞特性调控
-
2015-2018年国家自然科学基金面上项目:仿生多结构表面的低温憎水/防覆冰动态调控
-
2013-2017年国家自然科学基金重点项目:仿生多微纳米梯度界面的液滴动态传输聚集调控
-
2013-2017年国家重大科技973计划项目课题:仿生流体可控输运微/纳界面材料的设计原理
-
2013-2015年高等学校专项博士点基金:仿生多梯度结构协同的微尺度液滴传输调控
-
2010-2012年国家自然科学基金面上项目:基于仿生各向异性结构的表面及其覆冰定向脱离调控
研究成绩:
开展生物及仿生界面材料的研究,以典型的生物及仿生界面的特殊浸润性为主线,系统地揭示了生物/仿生微纳米结构表面的智能化浸润性的机理,探索仿生材料制备的物理、化学及纳米技术等交叉的技术和方法,开展了仿生材料的可控制备、及其仿生材料的各向异性液滴方向运动调控,多梯度协同的水凝结液滴的驱动,微纳米结构防覆冰功能性研究。揭示材料表面的微纳米结构效应、各向异性效应对表面浸润性的调控机制。相关研究已获得突破性成果,并于2010年以第一作者身份在国际顶级期刊《自然》发表学术论文封面作1篇,研究论文中提出了微纳米结构效应及其多梯度协同效应概念,为随后的仿生设计及材料研究奠定了基础。在开展的系列的仿生材料的研究中,并先后以第一作者或通讯作者或共同通讯作者身份在国际高影响力期刊《先进材料》、《先进功能材料》等发表了高水平的学术论文。相关研究在仿生材料制备新技术与方法,自然现象机理揭示,物理化学模型建立等方面均具有原创性。研究工作得到《自然》期刊、英国皇家化学会的特征宣传,及相关领域学术专家们较高关注。其中有三篇论文被国际顶级期刊《自然》《科学》以及其自然子刊的引用数次。积极开展学术合作,构成了具有结构合理的的合作研究学术梯队,至今为止,率领研究团队,在化学领域以及纳米材料领域,主持国家自然科学基金重点项目题为“仿生微纳米梯度界面液滴动态传输聚集调控”;以及科技部973项目课题为“仿生流体可控输运界面材料的设计原理”等。围绕项目而展开的合作研究成员有教授1人(博士生导师)、副教授4人(均博士学位,硕士生导师)、讲师5人(均博士学位,硕士生导师)。培养青年人、研究博士生、硕士生累计50余人。
将生物表面的梯度特征和梯度协同概念引入仿生界面材料功能体系研究之中,是近几年贯彻的研究理念,已形成化学学科、化学与物理领域中有特色的研究方向。其对微流控制、热转换器件、水收集、防覆冰等领域实际问题的解决有重要的科学价值和实际意义。通过利用聚合物材料,运用化学、物理、材料及生物表面多学科技术和方法。从自然现象中汲取灵感,探究生物梯度表界面的智能化浸润性,揭示其机理。设计并制备系列仿生功能的界面材料,实施仿生梯度表面智能化、功能性动态流体输运调控材料体系的研究:
(一)一维材料界面梯度体系设计与新功能研究
1.生物表面多梯度协同效应的揭示
揭示了筛器类蜘蛛(Uloborus
Walckenaerius)的捕捉丝的方向集水效应,针对微小尺度液滴驱动的关键问题,提出了“多协同效应”思想。以第一完成人在国际顶级学术期刊《自然》上发表论文1篇(Nature 2010,463, 640),并做封面突出报道。该工作突破了小尺度液滴驱动上的瓶颈问题。提出表面能梯度或者拉普拉斯压差协同是驱动几百微米以下尺度的液滴的最佳途径。该研究成果得到《自然》新闻网以题为“Dew Catchers”,英国广播公司BBC新闻网以题“How spider webs
catch water drops”,皇家化学科学学会RSC以题“How spider silk
soaks up water“等的广泛宣传,其中世界专家们Fritz Vollrath (英国牛津大学),Brent Opell(美国维吉尼亚技术院),Randolph Lewis (美国怀俄明州大学),Jose
Perez-Rigueiro (西班牙马德里科技大学)的极大关注和高度评价,指出其研究为新材料的设计和材料的应用提供思路。该研究论文在期刊Nat. Mater.、Nat. Commun.等引用。至今他引百余次。
2.仿生梯度协同界面的悬滴特性调控
提出了提拉涂层瑞利不稳定技术,并运用聚甲基丙烯酸甲酯PMMA/N,N-二甲基甲酰胺DMF溶液,设计并可控制备了仿生类蜘蛛丝纺锤节梯度结构纤维。通过优化控制实验条件参数,获得了不同尺寸纺锤节梯度纤维。通过研究不同梯度纤维悬挂水滴的临界尺度,揭示了稳定悬滴的固液气三相界面的“曲率梯度”效应机制(Adv. Mater.2011,23,3708,封面突出报道)。其工作与Small 2011,7,3429和Adv. Mater. 2011,23, 5486同时被皇家化学会以题为“Water-catching spinout from synthetic spider silk”特征宣传。
3.仿生梯度协同的液滴方向性运动调控
通过涂层的瑞利不稳定技术,运用聚合物有机物(如聚甲基丙烯酸甲酯PMMA、聚偏二氟乙烯PVDF、聚苯乙烯PS等)的N,N-二甲基甲酰胺DMF溶液,可控制备了不同亲/疏化学组分、不同粗糙程度的类蜘蛛丝纺锤节梯度结构纤维。从而实现了不同粗糙纺锤节梯度纤维对微小液滴驱动方向性的调控,揭示了纤维表面的表面能量、拉普拉斯压差和表面粗糙梯度等多梯度协同的驱动特性基本规律(Adv.Mater.2010,22,5521,封面突出报道),并被英国《自然》期刊以题“Controlling water on synthetic silk”、亚洲材料研究学会以题“Bioinspired
polymers: Driving droplets”特别宣传。此外,进一步研究了温度响应浸润性仿生类蜘蛛丝纤维,调控了微尺度液滴的方向性驱动,进一步证实了多梯度协同效应对液滴方向传输调控的适用性,其研究成果发表在Chem. Commun. 2013, 49, 5253. (背封面报道)
4.仿生梯度纤维的水聚集特性调控
通过涂层的瑞利不稳定技术,运用聚合物有机物聚甲基丙烯酸甲酯PMMA/N,N-二甲基甲酰胺DMF溶液,可控制备了不同尺度系列纺锤节梯度结构纤维。实现了不同梯度结构,及不同雾流条件下的水聚集特性调控。为水收集纤维材料的设计和研究提供了基础(Adv.Mater.2011,23,5486,封面突出报道)。其工作与Small 2011,7,3429和Adv. Mater. 2011,23, 3708同时被皇家化学会的特征宣传。
5.可控连续制备的仿生梯度纤维研究
运用流体抽拉涂层瑞利不稳定技术,制备了大面积仿生丝集水纤维(Small2011,7,3429)。提供了一种连续快速可控制备仿生结构纤维的新方法,内插页突出报道)。该研究方法可以获得任意长度纤维的制备,为纤维规模化生产提供模型,其工作与Adv. Mater. 2011,23, 3708和Adv. Mater.2011,23,3708同时得到皇家化学会RSC题为“Water-catching spinout from synthetic spider silk”的特征宣传。
6.微尺度异质纤维的制备与微观水聚集性的调控
运用共轴静电纺丝技术(Adv.
Funct. Mater.2011,21,1398,背封面突出报道),并设计内外流体表面张力差,有效地调控了外流体的周期曲率界面的形成,可控制备出了异质的亲/疏水交替的仿生丝纤维。实现了异质梯度纤维的微观水聚集性调控。
此外,针对筛器蜘蛛捕捉丝的悬滴能力,揭示了微纳米结构粗糙曲率的特征引发超强毛细粘滞力的机制,建立了微纳米粗糙曲率的粘滞力学模型(Soft Matter2011,7,9468)。
系统地开展了多级纺锤节梯度结构纤维的设计、可控制备,以及水聚集特性与能力的研究,获得了系列的结果 (J. Mater. Chem. A2013, 1, 8363;Soft Matter2011,7,9468;2012,8,11236;2012,8,11450;Langmuir2012,28,4737)。
(二)二维界面梯度材料体系与新功能研究
7.微纳米结构表面的疏冰性调控
通过运用微加工技术和纳米晶体生长技术,构建了类蝴蝶翅膀的仿生锯齿微纳米结构的超疏水表面(Adv. Mater.2012,24, 2642),并将其表面与微米结构表面、纳米结构表面对比原位观察,发现所制备的微纳米结构的表面具有较长时间(~7200秒)的防结冰延时性。其证实了微纳米结构协同效应的表面具有优越的防覆冰特性。其研究为设计新型防覆冰表面提供理论基础。
8.生物表面液滴方向性脱离机制的揭示
揭示了蝴蝶(Morpho aega)翅膀的方向性斥水特性的机理(Soft Matter2007,3,178)。从微纳米层次上,提出同一表面上形成了方向依赖的两种高/低粘滞的超疏水状态共存机制。该研究论文被国际顶级高影响力期刊Science、Nat. Mater.、Nat. Commun.等引用。至今他引136次。
9.生物表面梯度锯齿阵列疏水效应的揭示
揭示了黑麦草叶(ryegrass leaf)的各向异性锥状锯齿阵列结构及其各向异性浸润性机制(Soft Matter2011,8,1770)。同时利用聚偏氟乙烯PVDF成功制备了类黑麦草叶表面微纳米结构的仿生表面,并实现了微尺度液滴的选择的方向性脱离特性。
10.生物表面多取向结构的低温超疏水性机理
发现了蝴蝶(Morpho nestira)翅膀的微纳米结构具有超强的低温防雾特性,揭示了蝴蝶翅膀的低温憎水特性及其机制(Soft Matter2011,7,10569)。指明了蝴蝶翅膀上的多级取向结构,是导致翅膀表面在低温条件下对液滴产生方向性脱离的根本原因。其为设计防覆冰表面提供思路。
开展了对荷叶表面梯度特征的揭示(Appl.Phys.Lett.2008,92,084106; \Soft Matter, 2008,4, 2232;),以及仿生表面动态浸润性的研究(Appl.Phys.Lett. 2008,93,094107;Appl.Phys.Lett.2009,94,144104;被Nat. Mater.引用)等。
综上所述,开展了系统创新性研究工作。在国际顶级的高影响力期刊发表论文:Nature;Adv. Mater.;Adv. Funct. Mater.;Small;Chem. Commun.;Langmuir,Soft
Matter, Appl. Phys. Lett.等,封面\内封面\背封面\内插页突出报道等8篇。研究论文得到了自然期刊、皇家化学学会及专家们在仿生结构材料制备以及浸润功能性研究上给予了肯定。论文被国际期刊如Nature、Nat. Mater.、Nat. Commun.、Science等引用。上述研究成果将给新型功能材料设计提供参考。
封面报道:
出版专著:
-
1. Bioinsipred Materials Surfaces. Y. Zheng*. Jenny Stanford Publishing. (ISBN: 9781003513889). Agust 9, 2024. 1-422.
-
2. Bioinspired Design of Materials Surfaces. Y. Zheng*. Elsevier. (ISBN 9780128148433). August 9, 2019, 1-338.
-
3. Bio-inspired Wettability Surfaces: Developments in Micro- and Nanostructures. Y. Zheng*. Pan Stanford Publishing. (ISBN 9789814463607/9789814463614. June 16, 2015, 1-216.
-
4. (Chapter), Biological Surface: Lotus Leaves and Butterfly Wings, Self-cleaning coating-Structure, Fabrication and Application in RSC smart materials. C. Song, Y. Zheng*. 2016.
发表论文 (years from 2007 to 2023):
-
1. Robust Photothermal Icephobic Surface with Mechanical Durability of Multi-bioinspired Structures. M. Zhou, L. Zhang, L. Zhong, M. Chen, L. Zhu, T. Zhang, X.g Han, Y. Hou, and Y. Zheng*. Adv. Mater. 2023,230532. https://doi.org/10.1002/adma.202305322.
-
2. Highly Efficient Photothermal Icephobic/de-Icing MOF-Based Micro and Nanostructured Surface. L. Zhang, B. Luo, K. Fu, C. Gao, X. Han, M. Zhou, T. Zhang, L. Zhong, Y. Hou, and Y. Zheng*. Adv. Sci. 2023, 2304187.
-
3. A UV-Resistant Heterogeneous Wettability-Patterned Surface. C. Gao, L. Zhang, Y. Hou, and Y. Zheng*. Adv. Mater. 2023, 2304080.
-
4. Bioinspired Robust Helical-Groove Spindle-Knot Microfibers for Large-Scale Water Collection. S. Wang, L. Zhu, D. Yu, X. Han, L. Zhong, Y. Hou, and Y. Zheng*. Adv. Funct. Mater. 2023, 2305244.
-
5. Efficient Atmospheric Water Harvesting of Superhydrophilic Photothermic Nanocapsule. X. Han, L. Zhong, L. Zhang, L. Zhu, M. Zhou, S. Wang, D. Yu, H. Chen, Y. Hou, and Y. Zheng*. Small 2023, 2303358.
-
6. Special fog harvesting mode on bioinspired hydrophilic dual-thread spider silk fiber. J. Huan, M. Chen, Y. Hou* , Y. Zheng *. Chemical Engineering Journal 473 (2023) 145174.
-
7. Integrative Bioinspired Surface with Annular Pattern and Three Dimension Wettable Gradient for Enhancement of Fog Collection. X. Geng, Y. Xing, J. Huan, Y. Hou,* and Y. Zheng*. Adv. Mater. Interfaces 2023, 10, 2201978.
-
8. Liquid Confine-Induced Gradient-Janus Wires for Droplet Self-Propelling Performances in High Efficiency. L. Zhong, H. Chen, L. Zhu, M. Zhou, L. Zhang, S. Wang,. X. Han, Y. Hou, and Y. Zheng*. Adv. Funct. Mater. 2022, 2208117.
-
9. Robust photothermal superhydrophobic coatings with dual-size micro/nano structure enhance anti-/de-icing and chemical resistance properties. L. Zhang, C. Gao, L. Zhong, L. Zhu, H. Chen, Y. Hou, Y. Zheng*, Chemical Engineering Journal 446 (2022) 137461.
-
10. Excellent dual-photothermal freshwater collector with high performance in large-scale evaporation. L. Zhu , J. Li, L. Zhong, L. Zhang, M. Zhou, H. Chen, Y. Hou, Y. Zheng*, Nano Energy 100 (2022) 107441.
-
11. High efficient fog-water harvesting via spontaneous swallowing mechanism. Y. Liu, H. Zhai, X. Li, N. Yang, Z. Guo, L. Zhu, C. Gao, Y. Hou, Y. Zheng*. Nano Energy 96 (2022) 107076.
-
12. Underwater Fast Bubble Generating on Pitaya Thorn and Enhanced Biomimetic Gas Collection. L. Zhong, H. Chen, L. Zhu, L. Zhang, S. Wang, Y. Hou, and Y. Zheng*, Adv. Mater. Interfaces 2022, 2200274.
-
13. Electromigration-triggered programmable droplet spreading. S. Feng, Q. Wang, Y. Xing, Y. He, X. Geng, Y. Hou,* Y. Zheng*. Chemical Engineering Journal 423 (2021) 130281.
-
14. Recent advances in biomimetic fog harvesting: focusing on higher efficiency and large-scale fabrication. L. Zhong, L. Zhu, J. Li, W. Pei, H. Chen, S. Wang, Aamir Razaa, Assad Khan, Y. Hou* and Y. Zheng*. Mol. Syst. Des. Eng. 6 (2021), 986.
-
15. Enhanced Fog Harvesting through Capillary-Assisted Rapid Transport of Droplet Confined in the Given Microchannel. Q. Wang, Y. He, X. Geng, Y. Hou,* and Y. Zheng*. ACS Appl. Mater. Interfaces 13 (2021) 48292.
-
16. Excellent fog harvesting performance of liquid-infused nano-textured 3D frame. W. Pei, J. Li, Z. Guo, Y. Liu, C. Gao, L. Zhong, S. Wang, Y. Hou, Y. Zheng *. Chemical Engineering Journal 409 (2021) 128180.
-
17. Elastic Microstaggered Porous Superhydrophilic Framework as a Robust Fogwater Harvester. J. Li, C. Gao, W. Pei, Z. Guo, L. Zhong, Y. Liu, S. Wang, Y. Hou,* and Y. Zheng*. ACS Applied Mater Interfaces. 2020, 12(42), 48049-48056.
-
18. Bioinspired Nanofibrils-Humped Fibers with Strong Capillary Channels for Fog Capture. Y. Liu, N. Yang, C. Gao, X. Li, Z. Guo, Y. Hou,* and Y. Zheng*. ACS Applied Mater Interfaces. 2020, 12(25), 28876-28884.
-
19. Fog Collection on a Bio-inspired Topological Alloy Net with Micro-/Nanostructures. J. Li, C. Gao, W. Pei, Z. Guo, L. Zhong, Y. Liu, S. Wang, Y. Hou,* and Y. Zheng*. ACS Applied Mater Interfaces. 2020, 12(4), 5065-5072.
-
20. Water Harvesting of Bioinspired Microfibers with Rough Spindle-knots from Microfluidics. Y. Liu, N. Yang, X. Li, J. Li, W. Pei, Y. Xu, Y. Hou,* and Y. Zheng*. Small 2020, 16(9), 1901819.
-
21. Droplet Manipulation: Magically Cut Apart Microdroplet by Smart Nanofibrils Wire. M. Zhang, J. Li, W. Pei, Y. Liu, L. Zhong, S. Wang, and Y. Zheng*. Adv. Mater Interfaces. 2020, 7(10), 2000161.
-
22. Continuous Directional Water Transport on Integrating Tapered Surfaces. S. Feng, Q. Wang, Y. Xing, Y. Hou,* and Y. Zheng*. Adv Mater Interfaces. 2020 7(9), 2000081.
-
23. Droplet Self-Propeling Control on Bioinspired Fiber in Low Temperature and High Humidity Environment. Y. Hou,* Y. Xing, S. Feng, C. Gao, H. Zhou, and Y. Zheng*. Adv Mater Interfaces. 2020, 7(2),1901183.
-
24. Extremely Ice-Detached Array of Pine Needle-Inspired Concave-Cone Pillars. Z. Guo, B. Peng, Y. Liu, J. Li, W. Pei, Q. Li,* and Y. Zheng*. Adv Mater Interfaces. 2020, 7(2), 1901714.
-
25. Fog Harvesting of a Bioinspired Nanocone-Decorated 3D Fiber Network. C. Li, Y. Liu, C. Gao, X. Li, Y. Xing, and Y. Zheng*. ACS Appl. Mater. Interfaces 2019, 11, 4507?4513.
-
26. Integrative Bioinspired Surface with Wettable Patterns and Gradient for Enhancement of Fog Collection. Y. Xing, W. Shang, Q. Wang, S. Feng, Y. Hou,* and Y. Zheng*. ACS Appl. Mater. Interfaces 2019, 11, 10951?10958.
-
27. Anti-icing Properties of Bioinspired Liquid-Infused Double-Layer Surface with Internal Wetting Transport Ability. Z. Guo, C. Gao, J. Li, Y. Liu, and Y. Zheng*. Adv. Mater. Interfaces 2019, 1900244.
-
28. Droplets Manipulated on Photothermal Organogel Surfaces. C. Gao, L. Wang, Y. Lin, J. Li, Y. Liu, X. Li, S. Feng, Y. Zheng*. Adv. Funct. Mater. 2018, 1803072.
-
29. Magnetically Induced Low Adhesive Direction of Nano/ Micropillar Arrays for Microdroplet Transport. Y. Lin, Z. Hu, M. Zhang, T. Xu, S. Feng, L. Jiang, Y. Zheng*. Adv. Funct. Mater. 2018, 1800163.
-
30. Excellent Fog-Droplets Collector via Integrative Janus Membrane and Conical Spine with Micro/Nanostructures. H. Zhou, M. Zhang, C. Li, C. Gao, Y. Zheng*. Small 2018, 1801335.
-
31. Multilevel Nanoparticles Coatings with Excellent Liquid Repellency. L. Zhou, S. Yin, Z. Guo, N. Yang, J. Li, M. Zhang, Y. Zheng*. Adv. Mater. Interfaces 2018, 1800405.
-
32. Directional Droplet Spreading Transport Controlled on Tilt-Angle Pillar Arrays. Y. Lin, Z. Hu, C. Gao, Z. Guo, C. Li, Y. Zheng*. Adv. Mater. Interfaces 2018, 1800962.
-
33. An Integrative Mesh with Dual Wettable On–Off Switch of Water/Oil. S. Feng, Y. Xing, S. Deng, W. Shang, D. Li, M. Zhang, Y. Hou,* Y. Zheng*. Adv. Mater. Interfaces 2018, 5, 1701193.
-
34. Self-propelled droplet movement on micro/nano anisotropic structures surface. D. Li, Y, Zheng*, CHEMICAL JOURNAL OF CHINESE UNIVERSITIES (高等学校化学学报). 2018, 39, 109-114.
-
35. Directional bounce of droplets on oblique two-tiers conical structures. D. Li,S. Feng, Y. Xing, S. Deng, H. Zhou, Y. Zheng*. RSC Adv. 2017, 7, 35771-35775.
-
36. One-step fabricated wettable gradient surface for controlled directional underwater oil-droplet transport. W. Shang, S. Deng, S. Feng, Y. Xing, Y. Hou, Y. Zheng*, RSC Adv., 2017, 7, 7885-7889.
-
37. Controlled droplet transport to target on a high adhesion surface with multi-gradients. S. Deng, W. Shang, S. Feng, S. Zhu, Y. Xing, D. Li, Y. Hou*, Y. Zheng*. Sci. Rep. 2017, 7,45687.
-
38. Robust Electrical Uni-directional De-icing Surface with Liquid Metal (Ga90In10) and ZnO Nano-Petal Composite Coatings. M. Zhang, S. Zhan, Z. He, J. Lu, H. Gui, J. Liu,*, Y. Zheng*, L. Wang*. Journal of Materials & Design. 2017,126, 291-296.
-
39. Controlled transportation of droplets and higher fog collection efficiency on a multi-scale and multi-gradient copper wire. Y. Xing, S. Wang, S. Feng, W. Shang, S. Deng, L. Wang, Y. Hou*, Y. Zheng,*. RSC Adv. 2017, 7, 29606-29610.
-
40. Robust superhydrophobic coatings with micro-and nano-composite morphology. J. Li, L. Zhou, N. Yang, C. Gao, Y. Zheng*, RSC Adv., 2017, 7, 44234-44238.
-
41. A strategy of anti-fogging: air-trapped hollow microspheres-nanocomposites. M. Zhang, L. Wang, S. Feng, Y. Zheng*, Chem. Mater., 2017, 29 (7), 2899–2905.
-
42. Robust Anti-Icing Performance of a Flexible Superhydrophobic Surface. L. Wang, Q. Gong, S. Zhan, L. Jiang, Y. Zheng*. Adv. Mater. 2016, 28, 7729–7735.
-
43. High-Efficiency Fog Collector: Water Unidirectional Transport on Heterogeneous Rough Conical Wires. T. Xu, Y. Lin, M. Zhang, W. Shi, Y. Zheng*. ACS Nano, 2016, 10, 10681?10688.
-
44. Manipulation on Wettable Gradient Surfaces with Micro-/Nano-Hierarchical Structure. Y. Hou, S. Feng, L. Dai*, Y. Zheng*. Chem. Mater. 2016, 28, 3625–3629.
-
45. Magnetic-guided directional rebound of droplet on a superhydrophobic flexible needle surface. L. Wang, C. Gao, Y. Hou*, Y. Zheng*, L. Jiang., J. Mater. Chem. A, 2016, 2016, 4, 18289-18293.
-
46. Orientation-Induced Effects of Water Harvesting on Humps-on-Strings of Bioinspired Fibers. Y. Chen, D. Li, T. Wang, Y. Zheng*. Sci. Rep. 2016, 6, 19978.
-
47. Lotus effect in wetting and self-cleaning. M. Zhang, S. Feng, L. Wang, Y. Zheng*. Biotribology 2016, 5, 31–43.
-
48. Bioinspired Structure Materials to Control Water-collecting Properties. M. Zhang, Y. Zheng*. Materials Today: Proceedings, 2016, 3, 696-702.
-
49. Coalesced-droplet transport to apex of magnetic-responsive cone spine array. L. Wang, M. Zhang, C. Gao, Y. Zheng*. Adv. Mater. Interfaces, 2016, 3, 1600145.
-
50. Highly Efficient Fog Collection Unit by Integrating Artificial Spider Silks. H. Dong , Y. Zheng , N. Wang*, H. Bai , L. Wang , J. Wu , Y. Zhao*, L. Jiang. Adv. Mater. Interfaces 2016, 3, 1500831.
-
51. Simultaneous synthesis/assembly of anisotropic cake-shaped porphyrin particles toward colloidal microcrystals. T. Wang, M. Kuang, F. Jin, J. Cai, L. Shi, Y. Zheng, J. Wang* & L. Jiang. Chem. Commun., 2016, 52, 3619-3622.
-
52. Unique Necklace-Like Phenol Formaldehyde Resin Nanofi bers: Scalable Templating Synthesis, Casting Films, and Their Superhydrophobic Property. X. Wang , M. Zhang , R. Kou , L. Lu , Y. Zhao , X. Xu , G. Liu , Y. Zheng , & S. Yu*. Adv. Funct. Mater. 2016, 26, 5086–5092.
-
53. Spider silk and bioinspired silk on wettability. L. Zhao, Y. Zheng*, Current Bionanotechnology, 2015. 1, 18-31.
-
54. Controlling droplet transport to target on a gradient adhesion surface. S. Feng, S. Wang, Y. Zheng*, Y. Hou,*. Chem. Commun. 2015, 51, 6010 – 6013.
-
55. Controlling of water collection ability by elasticity bioinspired fiber. S. Wang, S. Feng, Y. Hou,* Y. Zheng,*. Macromol. Rapid Commun. 2015, 36, 459?464.
-
56. Bio-inspired Artificial Cilia with Magnetic Dynamic Properties. L. Sun, Y. Zheng*. Front. Mater. Sci. 2015, 9,178-184.
-
57. Radial Wettability Gradient of Hot Surface to Control Droplets Movement in Directions. S. Feng, S. Wang, Y. Tao, W. Shang, S. Deng, Y. Hou,* Y. Zheng*. Sci. Rep. 2015, 5, 10067.
-
58. Driving of Droplet on Nano-Gradient Microhump Surface in Low-Temperature and High-Humidity Environment. L. Wang, W. Shi, M. Zhang, S. Feng, Y. Hou, Y. Zheng*. Adv. Mater. Interfaces 2015, 1500040.
-
59. Dynamic Magnetic Responsive Wall Array with Droplet Shedding-off Properties. L. Wang, M. Zhang, W. Shi, Y. Hou, C. Liu, S. Feng, Z. Guo, Y. Zheng*. Sci. Rep. 2015, 5, 11209.
-
60. Controlled smart anisotropy unidirectional spreading of droplet on fibrous surface. M. Zhang, L. Wang, Y. Hou, S. Feng, Y. Zheng*. Adv. Mater. 2015, 27, 5057–5062.
-
61. Wet-Induced Fabrication of Heterogeneous Hump-on-String Fibers. C. Song, R. Du & Y. Zheng*. Materials 2015, 8, 4249-4257.
-
62. Excellent Anti-icing Abilities of Optimal Micro-pillars Arrays with Nano-hairs. W. Shi, L. Wang, Z. Guo, Y. Zheng*. Adv. Mater. Interfaces, 2015, 2, 1500352.
-
63. Adhesion-Free Property on Low-Temperature Deformed Micro-Ratchet with Nano-Hairs. L. Wang, Y. Hou, M. Zhang, Z. Guo, W. Shi, & Y. Zheng*. Chem. J. Chinese U. 2015,36,1548-1552.
-
64. Excellent bead-on-string silkworm silk fiber for drop-capturing ability. Y. Chen, L. Wang, Y. Xue, Y. Zheng*. J. Mater. Chem. A 2014, 2, 1230-1234.
-
65. Strong anti-ice ability as nano-hairs over micro-ratchet structures. P. Guo, M. Wen, L. Wang, Y. Zheng*. Nanoscale 2014, 6, 3917-3920. (Front Cover)
-
66. Wetting-controlled Strategies: from Theories to Bio-inspiration. C. Song, Y. Zheng*. J. Colloid Interface Sci. 2014, 427, 2-14 (Cover).
-
67. Bioinspired One-Dimensional Materials for Directional Liquid Transport. J. Ju, Y. Zheng, L. Jiang*. Account Chem Res. 2014, 47 (8), 2342–2352.
-
68. Water Collection Abilities of Green Bristlegrass Bristle. Yan Xue, Ting Wang, Weiwei Shi, Leilei Sun and Y. Zheng*. RSC Adv. 2014, 4 (77), 40837-40840.
-
69. Ice-phobic gummed tape with nano-cones-on-microspheres. L. Wang, P. Guo, M. Wen, L. Jiang, Y. Zheng*. J. Mater. Chem. A 2014, 2, 3312-3316.
-
70. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings. C. Liu, J. Ju, Y. Zheng*, L. Jiang*. ACS Nano 2014, 8, 1321-3129.
-
71. Superhydrophobic to icephobic properties of micro-/nanostructure composite surfaces. M. Wen, Y. Zheng*. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2014, 35, 1011-1015.
-
72. Anti-fogging and icing-delay properties on composite micro- and nanostructured surfaces. M. Wen, L. Wang, M. Zhang, L. Jiang, Y. Zheng*. ACS Appl. Mater. Interfaces 2014, 6, 3963-3968.
-
73. Directional size-directed droplet target transport on bioinspired gradient fiber. Y. Xue, Y. Chen, T. Wang, L. Jiang, Y. Zheng*. J. Mater. Chem. A. 2014, 2 (20), 7156-7160. (Back Cover)
-
74. Bioinspired wet-assembly fibers: from nanofragments to microhumps on string in mist. C. Song, L. Zhao, W. Zhou, M. Zhang Y. Zheng*. J. Mater. Chem. A 2014, 2, 9465-9468.
-
75. Controlled directional water droplet spreading on high adhesion surface. S. Feng, S. Wang, L. Gao, G. Li, Y. Hou,* Y. Zheng*. Angew. Chem. Int. Ed. 2014, 53, 6163–6167.
-
76. Efficient Water Collection on Integrative Bioinspired Surfaces with Star-Shaped Wettability Patterns. H. Bai, L. Wang, J. Ju, R. Sun, Y. Zheng*, L. Jiang. Adv. Mater. 2014, 26, 5025-5030.
-
77. Bioinspired One-Dimensional Materials for Directional Liquid Transport. J. Ju, Y. Zheng, L. Jiang. Account Chem. Res. 2014, 47 (8), 2342–2352.
-
78. Directional Drop Transport Achieved on High-Temperature Anisotropic Wetting Surface. C. Liu, J. Ju, J. Ma*, Y. Zheng* and L. Jiang*. Adv. Mater. 2014, 26, 6086-6091.
-
79. Bioinspired heterostructured bead-on-string fibers via controlling wet-assembly of nanoparticles. L. Zhao, C. Song, M. Zhang, Y. Zheng*, Chem. Commun. 2014, 26, 6086-6091.
-
80. Temperature-triggered directional motion of tiny water droplets on bioinspired fibers in humidity. Y. Hou, L. Gao, S. Feng, Y. Chen, Y. Xue, L. Jiang & Y. Zheng*. Chem. Commun. 2013, 49, 5253-5257. (Back cover)
-
81. Bioinspired Micro-/Nanostructure Fibers with Water-collecting Properties. Y. Chen, Y. Zheng*. Nanoscale 2014, 6, 7703-7714.
-
82. Water-assisted fabrication of porous bead-on-string fibers. S. Feng, Y. Hou*, Y. Chen, Y. Zheng* & L. Jiang. J. Mater. Chem. A 2013, 1, 8363-8366.
-
83. Photo-controlled Water Gathering on Bio-inspired Fibers. S. Feng, Y. Hou,* Y. Xue, L. Gao,* L. Jiang & Y. Zheng*. Soft Matter 2013, 9, 9294-9297.
-
84. Icephobic / anti-icing properties of micro- / nanostructured surfaces. P. Guo, Y. Zheng*, M. Wen, C. Song, Y. Lin & L. Jiang. Adv. Mater. 2012, 24, 2642-2648.
-
85. Functional fibers with unique wettability inspired by spider silks. H. Bai, J. Ju, Y. Zheng* & L. Jiang*. Adv. Mater. 2012, 24, 2786-2791. (Inside Front Cover)
-
86. Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings. M. Sun, A. Liang*, G. S. Watson, J. A. Watson, Y. Zheng*, J. Ju, & L. Jiang. PLoS ONE 2012, 7, e35056.
-
87. Multi-structure and multi-function integrated fog collection system of cactus. J. Ju, H. Bai, Y. Zheng, T. Zhao, R. Fang & L. Jiang*. Nat. Commun. 2012. 3:1247 | DOI: 10.1038/ncomms2253
-
88. Condensed-drop Repellency of Butterfly Wings with Biological Photonic Crystals. H. Mei, D. Luo, J. Wang, Y. Zheng*. Chem. J. Chinese U. 2012, 33(03): 575-579.
-
89. Controlling water capture of bio-inspired fibers with hump structures. X. Tian, Y. Chen, Y. Zheng*, H. Bai, & L. Jiang*. Adv. Mater. 2011, 23, 5486-5491. (Cover story, Highlight by RSC)
-
90. Large-scale fabrication of bioinspired fibers for directional water collection. H. Bai, R. Sun, J. Ju, X. Yao, Y. Zheng,* & L. Jiang*. Small 2011, 7, 3429-3433. (frontispiece, Highlight by RSC)
-
91. Controlled fabrication and water collection ability of bioinspired artificial spider silks. H. Bai, J. Ju, R. Sun, Y. Chen, Y. Zheng,* & L. Jiang*. Adv. Mater. 2011, 23, 3708-3711. (Cover story)
-
92. Bio-inspired heterostructured fibers with bead-on-string to respond the environmental wetting. X. Tian, H. Bai, Y. Zheng*, & L. Jiang. Adv. Funct. Mater. 2011, 21, 1398-1402. (Back cover story)
-
93. Moth Wing Scales Slightly Increase the Absorbance of Bat Echolocation Calls. J. Zeng, N. Xiang, L. Jiang, G. Jones, Y. Zheng, B. Liu, S. Zhang. PLOS ONE. 2011, 6, e27190.
-
94. A study of the anti-reflection efficiency of natural nano-arrays of varying sizes. M. Sun, A. Liang*, Y. Zheng, G. Watson, J. Watson, BIOINSPIRATION & BIOMIMETICS. 2011, 6, 026003.
-
95. Organic Nanowire Crystals Combine Excellent Device Performance and Mechanical Flexibility. Q. Tang, Y. Tong, Y. Zheng, Y. He, J. Zhang, H. Dong, W. Hu*, T. Hassenkam, T. Bjornholm. Small 2011, 7, 189-193.
-
96. Directional shedding-off of water on natural/bio-mimetic taper-ratchet array surfaces. P. Guo, Y. Zheng*, C. Liu & L. Jiang. Soft Matter 2012, 8, 1770-1775.
-
97. Water collection behavior and hanging ability of bioinspired fiber. Y. Hou, Y. Chen, Y. Zheng* & L. Jiang*. Langmuir 2012, 28, 4737-4743.
-
98. Stronger water hanging ability and higher water collection efficiency of bioinspired fiber with multi-gradient and multi-scale spindle knots. Y. Hou, Y. Chen, Y. Xue, L. Wang, Y. Zheng* & L. Jiang*. Soft Matter 2012, 8, 11236-11239.
-
99. Multi-structure and multi-function integrated fog collection system of cactus.J. Ju, H. Bai, Y. Zheng, T. Zhao, R. Fang & L. Jiang*. Nat. Commun. 2012, 3, 1247.
-
100. Bioinspired spindle-knotted fibers with a strong water-collecting ability from humid environment. Y. Chen, L. Wang, Y. Xue, Y. Zheng* & L. Jiang. Soft Matter 2012, 8, 11450-11454.
-
101. Condensed-drop repellency of butterfly wings with biological photonic crystals. H. Mei, D. Luo, J. Wang, & Y. Zheng*, Chem. J. Chinese U. 2012, 33, 575-579.
-
102. Multi-level Micro-/Nanostructures of Butterfly Wing Adapt Low Temperature to Water Repellency. H. Mei, D. Luo, P. Guo, C. Song, C. Liu, Y. Zheng* & L. Jiang. Soft Matter 2011, 7, 10569-10573.
-
103. Capillary adhesion of wetted cribellate spider capture silks for larger pearly hanging-drops. Z. Huang, Y. Chen, Y. Zheng* & L. Jiang. Soft Matter 2011, 7, 9468–9473.
-
104. A study of the anti-reflection efficiency of natural nano-arrays of varying sizes. M. Sun, A. Liang*, Y. Zheng*, G. S. Watson & J. A. Watson. Bioinsp. Biomim. 2011, 6, 026003.
-
105. Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Q. Cheng, M. Li, Y. Zheng, B. Su, S. Wang & L. Jiang. Soft Matter 2011, 7, 5948-5951
-
106. Organic nanowire crystals combine excellent device performance and mechanical flexibility. Q. Tang, Y. Tong, Y. Zheng, Y. He, Y. Zhang, H. Dong, W. Hu, T. Hassenkam, T. Bj?rnholm. Small 2011, 7, 189-193.
-
107. Moth wing scales slightly increase the absorbance of bat echolocation calls. J. Zeng, N. Xiang, L. Jiang, G. Jones, Y. Zheng, B. Liu, S. Zhang*. PLoS ONE 2011, 6, e27190.
-
108. Bioinspired electrospun knotted microfibers for fog harvesting. H. Dong, N. Wang, L. Wang, H. Bai, J. Wu, Y. Zheng, Y. Zhao*, L. Jiang*. ChemPhysChem 2012, 13, 1153-1156.
-
109. Direction-dependent adhesion of water strider’s legs for water-walking. L. Xu, X. Yao, Y. Zheng*. Solid State Sci. 2012, 14, 1146-1151.
-
110. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. M. Liu, Y. Zheng, J. Zhai & L. Jiang*. Acc. Chem. Res. 2010, 43, 368-377.
-
111. Effects of Chemical Composition and Nano-structures on the Wetting Behaviour of Lotus Leaves. J. Wang, K. Wang, Y. Zheng, L. Jiang. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE. 2010, 31, 1596-1599.
-
112. Bioinspired fabrication of functional polymer photonic crystals. Y. Zhang, Z, Li, Y. Zheng, J. Wang*. AGRICULTURAL SCIENCES IN CHINA. 2010, 9, 1253-1261.
-
113. The structural color of red rose petals and their duplicates. L. Feng, Y. Zhang, M. Li, Y. Zheng, W. Shen & L. Jiang. Langmuir 2010, 26(18), 14885-14888.
-
114. Directional water collection on wetted spider silk. Y. Zheng, H. Bai, Z. Huang, X. Tian, F. –Q. Nie, Y. Zhao, J. Zhai & L. Jiang*. Nature 2010, 463, 640?643. (Cover story, Highlight by Nature, BBC, RSC et al)
-
115. Direction controlled driving of tiny water drops on bio-inspired artificial spider silks. H. Bai, X. Tian, Y. Zheng*, J. Ju & L. Jiang*. Adv. Matter. 2010, 22, 5521-5525. (Cover story, Highlight by Nature, NPG Asia-materials).
-
116. Ratchet-induced anisotropic behavior of superparamagnetic microdroplet. J. Zhang, J. Cheng, Y. Zheng* & L. Jiang. Appl. Phys. Lett. 2009, 94,144104.
-
117. Wetting properties on nanostructured surfaces of cicada wings. M. Sun, G. S. Watson, Y. Zheng, J. A. Watson, & A. Liang. J. Exp. Biol. 2009, 212: 3148-3155.
-
118. Extreme “water repellency” on strong water-spreading surface without tilted degree actuation. Y. Zheng*, L. Jiang, J. Wang & D. Han. Appl. Phys. Lett. 2008, 93, 094107.
-
119. How does the leaf margin make the lotus surface dry as the lotus leaf floats on water? J. Zhang, J. Wang, Y. Zhao, L. Xu, X. Gao, Y. Zheng* & Lei Jiang*. Soft Matter 2008, 4, 2232-2237. (Highlight by RSC)
-
120. Colorful humidity sensitive photonic crystal hydrogel. E. Tian, J. Wang*, Y. Zheng, Y. Song*, L. Jiang, D. Zhu. J. Mater. Chem. 2008, 18, 1116-1122.
-
121. In situ investigation on dynamic suspending of micro-droplet on lotus leaf and gradient of wettable micro- and nanostructure from water condensation. Y. Zheng*, D. Han, J. Zhai & L. Jiang. Appl. Phys. Lett. 2008, 92, 084106.
-
122. Bubble Transfer Effect of Superhydrophobic Mesh Structure in Water. J. Wang, Y. Zheng, L. Jiang*. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE. 2008. 29, 2484-2488.
-
123. Investigation on microstructure and wettability of mosquito's body surface. Y. Yao, X. Yao, Z. Li, H. Zhu, Y. Zheng*. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE. 2008, 29, 1826-1828.
-
124. Characteristics of echolocating bats' auditory stereocilia length, compared with other mammals. Y. Qian, J. Zeng, Y. Zheng, J. Latham, B. Liang, L. Jiang, S. Zhang*. SCIENCE IN CHINA SERIES C-LIFE SCIENCES. 2007, 50, 492-496.
-
125. Directional adhesion of superhydrophobic butterfly wings. Y. Zheng, X. Gao & L. Jiang. Soft Matter 2007, 3, 178-182. (Cover story, Highlighted by RSC).
Conferences:
-
1. The 15th China-Japan Bilateral Symposium on Intelligent Electrophotonic Materials & Molecular Electronics. Oral presentation & Section chair. Sep. 4-5, 2010, BUAA, Beijing, China.
-
2. The Xiangshan Science Conference on Biomimetic Materials and Devices (biomimetic materials and devices: structure, dynamics and function). 17-19, Oct, 2011, BUAA, Beijing, China.
-
3. The France-china symposium on advanced materials. Oral presentation. 5-7, Jan, 2012, BUAA, Beijing, China.
-
4. The 12th Conference on Solid State Chemistry and Inorganic Synthesis (CSSCIS–2012). Invited presentation. 27-30, Jun, 2012, Qingdao, China
-
5. The Asian Conference on Nanoscience & Nanotechnology (AsiaNANO2012). Invited presentation. 7-10, Sep., 2012, LiJiang, China.
-
6. The International Symposium on Nanomaterials and Nanodevices 2012 (ISNN-2012). Oral presentation & Section chair. 12-15, Sep., 2012, Suzhou, China.
-
7. The Second International Conference on Small Science (ICSS 2012). Invited presentation. 16-19 Dec. 2012, Orland Florida, USA.
-
8. The Third International Conference on Multifunctional, Hybrid and, Nanomaterials (HYMA 2013). Oral or Poster presentation. 3-7 Mar. 2013, Sorrento, Italy.
-
9. The 3rd International Colloids Conference - Colloids and Energy (COLL). Poster presentation. April 21-24, 2013, Xiamen, China.
-
10. The ChinaNano 2013. Oral presentation. Sep. 5-7, 2013, Beijing, China.
-
11. The BIT’s 3rd Annual World Congress of Nano-S&T 2013. Invited presentation. Sep. 26-28, 2013. Xian, China.
-
12. The 4th Trilateral Conference on Advances in Nanoscience. Invited presentation. Dec. 4-7, 2013, Singapore.
-
13. The 2nd International Conference on BioTribology, Oral presentation, May, 11-14, 2014, Toronto, Canada.
-
14. The International Conference on Environmental Science and Technology (EST2014). Oral presentation. Jun. 9-13, 2014, Houston, Texas, USA.
-
15. The TechConnect World 2014 (Nanotech, Microtech, Biotech, Cleantech). Oral presentation. Jun. 15-19, 2014, Washington, DC, USA.
-
16. The theme of Energy, Materials and Nanotechnology (EMN). Invited presentation. “Bio-Inspired Multi-gradient Surface Materials for Water Collection”. Sep. 21-25, 2014. Chengdu, China.
-
17. The Third International Conference on Energy and Environment-Related Nanotechnology (ICEEN 2014). Invited presentation. Oct 24-27, 2014, Beijing, China.
-
18. The BIT’s 4th Annual World Congress of Nano Science & Technology. Invited presentation. Oct, 29-31, 2014. Qingdao, China.
-
19. The International Conference on Small Science (ICSS 2014). Invited presentation. Dec, 8-11, 2014, Hong Kong, China.
-
20. The Fourth International Conference on Multifunctional, Hybrid and Nanomaterials(HYMA 2015), Poster presentation, March 9-13 2015, in Sitges (near Barcelona), Spain.
-
21. The 1st Annual World Congress of Smart Materials-2015 (WCSM-2015), with the theme “Co-creating Dream of Smartness”, Session 1002: Functional fiber materials. Invited presentation. March 23-25, 2015, Busan, Republic of Korea
-
22. The 4th Annual World Congress of Advanced Materials-2015 (WCAM-2015). Invited presentation. May 27-29, 2015.
-
23. The International Conference and Expo on Smart Materials & Structures (Smart Materials-2015), invited as organizing committee, and Invited presentation. June 15-17, 2015, Los Angeles, USA.
-
24. The International Conference on Advances in Functional Materials. Oral presentation. June 29th, to July 3rd, 2015. Stony Brook University, Long Island, NY, USA.
-
25. The 1st International Conference on Applied Surface Science. Oral presentation. July 27-30, 2015, Shanghai, China.
-
26. The Advanced Materials World Congress. Invited presentation. August 23-26, 2015. Sweden.
-
27. The 5th Annual World Congress of Nano Science and Technology-2015 (Nano S&T-2015),
-
Theme of “Small Size, Big World”. Invited presentation. September 24-26, 2015, in Xi’an, China.
-
28. International Symposium on Bioinspired Interfacial Materials with superwettability” (iBIMS-2016). Invited presentation. January, 9-12, 2016, in Shanghai, China.
-
29. The First Middle-Eastern Materials Science Conference. Invited presentation. March, 22–23, 2016, Abu Dhabi, United Arab Emirates, New York University.
-
30. SMILE-2016 International Conference on Bio-Inspired Materials. Invited presentation, April 6-8, 2016, IFP Energies nouvelles, Rueil-Malmaison, France.
-
31. 3rd NANOSMAT-USA. Invited Speaker. May, 18-20, 2016. University of Texas at
-
Arlington, USA.
-
32. 2016 globe conference on polymer & composite materials. Invited presentation. May, 20-23, 2016. Hangzhou, China.
-
33. Nanotech France 2016, keynote presentation, June 1-3, 2016, Paris, France
-
34. 5th International Conference Smart and Multifunctional Materials, Structures and Systems, June 5-9, 2016, Perugia, Italy.
-
35. 5th World Congress on Materials Science & Engineering (Materials Congress-2016), Invited presentation, June 13-15, 2016, Alicante, Spain.
-
36. The 5th International Conference of Bionic Engineering (Invited speaker), June 21-24, 2016, Ningbo at the University of Nottingham Ningbo (UNNC) campus.
-
37. The 7th International Conference on Fog, Fog Collection and Dew, Invited presentation, July, 24-29, 2016. Wroc?aw, Poland.
-
38. European Advanced Materials. Invited presentation, 23-25 August 2016, Sweden.
-
39. International Conference and Exhibition on Nanomedicine and Nanotechnology, Nanomaterials and nanotechnology, October, 12-14, 2016, Baltimore, USA.
-
40. 3rd International Conference on Bioinspired and Biobased Chemistry & Materials, Invited Speaker, October 16-19, 2016, Nice, France.
-
41. Global Congress & Expo on Materials Science & Nanoscience Materials Science-2016, Invited speaker, October, 24-26, 2016, Dubai.
-
42. World Congress on Materials Science & Polymer Engineering (Keynote presentation, Organizing Committee Member for Materials Science-2016), Nov. 28-30, 2016, Abu Dhabi, UAE.
-
43. American Advanced Materials Congress, Invited speaker, Dec, 4-9, 2016, Miami, USA.
-
44. 2017 International Conference on Metrology and Properties of Engineering Surfaces. Invited speaker. June 26-29 2017. G?teborg, Sweden.
-
45. the 7th International Multidisciplinary Conference on Optofluidics (Optofluidics2017). Invited speaker, 25 to 28 July 2017, in Singapore.
-
46. the 644. WE-Heraeus-Seminar on “Bio-inspired, Nano- and Microstructured Surfaces: New Functionality by Material and Structure”, Invited Speaker. 29 – 31 May, 2017. In Physikzentrum Bad Honnef, Germany.
-
47. 20th International Conference on Advanced Nanotechnology. Keynote Speaker. September 11-12, 2017 in Amsterdam, Netherland.
-
48. 2018 MRS Spring Meeting of the MATERIALS RESEARCH SOCIETY. Invited Speaker. April 2-6, 2018 at the Phoenix Convention Center in Phoenix, Arizona.
-
49. the 4th International Conference on Bioinspired and Biobased Chemistry and Materials. Keynote Speaker. 14-17 October 2018. In Nice, France.
-
50. Shape Memory Applications, Research and Technology SMART 2018. Keynote Speaker. 5-9 December 2018. Hong Kong.
-
51. The Silver Jubilee Assembly of Advanced Materials Congress (AFMC 2019). Keynote, Speaker. 24 -27 March 2019. Stockholm, Sweden.
-
52. NANO Boston Conference (NWC Boston 2019), Invited Speaker. April 22-24, 2019, Boston, USA.
-
53. The 2 nd International Conference on Nanomaterials and Nanotechnology. Oral speaker. May 16-17, 2019, Prague, Czech Republic.
-
54. First International Conference on Nature Inspired Surface Engineering (NISE). Invited speaker. June 12- 14, 2019, Stevens Institute of Technology, Hoboken, New Jersey, USA.
-
55. the 2019 TechConnect World Innovation Conference & Expo. Oral Speaker, June 17-19, 2019, at the Hynes Convention Center, Boston, Massachusetts, U.S.A.
-
56. Annual Congress on Smart Materials 2019. Oral Speaker, July 08-10, 2019 at Prague, Czech Republic.
-
57. Celebration of 5 th anniversary of the AFM conference. Invited Speaker. July 22-24, 2019, the conference at George Washington University, DC.
-
58. Nanotech Forum 2019 with the theme “Nanotechnology-The science of miniature scale”. Keynote, Speaker. July 17-18, 2019 Zurich, Switzerland.
-
59. International Conference on Advances in Functional Materials in UCLA (AAAFM-UCLA). Invited Speaker. Aug 19-22, 2019, at the University of California, Los Angeles, USA.
-
60. Nature-Inspired Engineering (NIE). Keynote, Speaker. September 8-13, 2019, at Cetraro (Calabria), Italy.
-
61. the SIPS 2019 -Sustainable Industrial Processing Summit & Exhibition. Invited Speaker. 23-27 Oct 2019, Paphos, Cyprus.
-
62. the 3 rd International Caparica Christmas Conference on Translational Chemistry-IC 3 TC 2019. Keynote Speaker, December 2019, days 01-05 in the Caparica Village (Costa de Caparica) in Setubal area, Portugal.
-
63. International Symposium on Superwettability. Invited Speaker, January 12-15, 2020, Singapore.
-
64. The 7th International Conference of Bionic Engineering (ICBE 2023). Keynote Speaker, October 12-15, 2023, Wuhan, China.