Rationally tuned micropores within enantiopure metal-orgnic frameworks for highly selective separation of acetylene and ethylene
writer:S.C.Xiang, Z. Zhang, C.G.Zhao, K.Hong, X.B.Zhao, D.R.Ding, M.H.Xie, C.D.Wn, M.C.Das, R.Gill, K.M.Th
keywords:metal-orgnic frameworks
source:期刊
specific source:Nature-Communications,2011,2,Feb22.
Issue time:2011年
Separation of acetylene and ethylene is an important industrial process because both compounds are essential reagents for a range of chemical products and materials. Current separation approaches include the partial hydrogenation of acetylene into ethylene over a supported Pd catalyst, and the extraction of cracked olefins using an organic solvent; both routes are costly and energy consuming. Adsorption technologies may allow separation, but microporous materials exhibiting highly selective adsorption of C2H2/C2H4 have not been realized to date. Here, we report the development of tunable microporous enantiopure mixed-metal-organic framework (M′MOF) materials for highly selective separation of C2H2 and C2H4. The high selectivities achieved suggest the potential application of microporous M′MOFs for practical adsorption-based separation of C2H2/C2H4.