Links
Contact Info.
  • Address:天津市南开区卫津路94号南开大学化学楼南楼302室
  • Zip:300071
  • Tel:022-23507193
  • Fax:
  • Email:zhanghuiqi@nankai.edu.cn
Current Location :> Home > Publications > Text
Biological Sample-Compatible Ratiometric Fluorescent Molecularly Imprinted Polymer Microspheres by RAFT Coupling Chemistry
writer:Y Hou, Yiwei Zou, Yan Zhou, Huiqi Zhang*
keywords:Biological Sample-Compatible, Ratiometric, Fluorescent, Molecularly Imprinted Polymer Microspheres, RAFT Coupling Chemistry
source:期刊
specific source:Langmuir 2020, 36(41), 12403-12413.
Issue time:2020年
Ratiometric fluorescent molecularly imprinted polymer (MIP) sensors hold great promise in many bioanalytical areas because of their high sensitivity and selectivity as well as excellent self-referencing and visual detection capability. However, their synthetic strategies are rather limited and the development of such optosensing MIPs that can directly and selectively quantify small organic analytes in complex biological samples remains a formidable challenge owing to the complexity of sample matrices. Herein, a versatile and modular strategy to obtaining well-defined ratiometric fluorescent MIP microspheres capable of directly and selectively detecting an organic herbicide [2,4-dichlorophenoxyacetic acid (2,4-D)] in undiluted pure milks is described. First, it involves the synthesis of uniform "living" polymer particles via RAFT precipitation polymerization, their successive well-controlled grafting of a polymer shell labeled with red CdTe QDs (being inert to 2,4-D) and an MIP shell labeled with green 4-nitrobenzo[c] [1,2,5]oxadiazole (NBD) units (showing fluorescence "light-up" upon binding 2,4-D) via surface-initiated RAFT polymerization, and final grafting of hydrophilic poly(N-isopropylacrylamide) brushes via an efficient coupling reaction (i.e., RAFT coupling chemistry). The resulting hydrophilic dual fluorescent MIP particles showed excellent photostability and reusability. They exhibited obvious analyte binding-induced "turn-on"-type ratiometric fluorescence (and color) change and high 2,4-D optosensing selectivity and sensitivity in pure bovine milk (with a detection limit of 0.13 mu M). Moreover, they were directly applied to 2,4-D determination in undiluted pure goat milk with good recoveries (96.0-103.2%) and high accuracy (RSD = 1.5-5.5%), even in the presence of several analogues of 2,4-D. The general applicability of our strategy was also demonstrated. This study paves the way for efficiently developing various advanced MIP optosensors (of easily tunable structures and desired properties) highly promising in many bioanalytical applications.