相关链接
联系方式
  • 通信地址:上海市淞沪路2005号复旦大学江湾校区化学-高分子楼B5096办公室
  • 邮编:200438
  • 电话:021-31242829
  • 传真:
  • Email:yfyu@fudan.edu.cn
当前位置:> 首页 > 论文著作 > 正文
Preparation and Properties of Low Internal Stress Polyimide-b-Polysiloxane with a Hyperbranched Structure
作者:Zhou, ZX; Shen, GB; Huang, XR; Yang, CH; Yu,YF*
关键字:hyperbranched polyimide, polyimide-b-polysiloxane, low internal stress, low CTE, low modulus
论文来源:期刊
具体来源:ACS APPLIED POLYMER MATERIALS
发表时间:2023年
Polyimides (PIs) with excellent thermal stability, mechanical toughness, dielectric properties, and an inherently low coefficient of thermal expansion are widely applied in modern microelectronic fields expectedly. However, it is still a challenge to minimize the internal stress between the PI and substrates. Herein, a series of linear and hyperbranched polyimides and polyimide-b-polysiloxane copolymers were fabricated to tailor the modulus and the coefficient of thermal expansion. Their thermomechanical properties, dimensional stabilities, and thermal stabilities were characterized by dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), and thermal gravimetric analysis (TGA), and the phase separation morphology of polyimide-b-polysiloxane was investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The results showed that the internal stress of hyperbranched polyimide decreased by 11.00% compared with linear polyimide, while with the copolymerization of polyimides and polysiloxanes, the internal stress decreased by 54.62%. The hyperbranched polyimide-b-polysiloxane with a lower modulus has a CTE value of 20.1 ppm/degrees C close to the CTE of copper, which has tremendous potential to be applied in chip-scale packaging.