Exfoliated MoS2 anchored on graphene oxide nanosheets for enhancing thermoelectric properties of single-walled carbon nanotubes
writer:Yusheng Wang, Duo Jiang, Xiaoliang Ma, Yunfei Zhang*, Ping Fu, Feipeng Du*
keywords:Single-walled carbon nanotubes, GO-Assisted, Exfoliated MoS2, Interfacial interaction, Thermoelectric properties
source:期刊
specific source:Ceramics International
Issue time:2025年
Carbon nanotubes-based thermoelectric materials with high electrical conductivity (σ) and excellent mechanical properties have promising applications in flexible wearable devices. Two-dimensional transition metal sulfide MoS2 has been used to enhance the thermoelectric properties of carbon nanotubes due to its high Seebeck co-efficient (S). However, MoS2 nanosheets are prone to agglomeration due to their high specific surface area, which causes lower doping efficiency. In this work, MoS2@GO hybrids are successfully fabricated using a hydrothermal in-situ growth method to anchor exfoliated MoS2 on graphene oxide (GO) nanosheets, and MoS2@GO hybrids significantly enhance the interfacial interaction between MoS2 and single-walled carbon nanotubes (SWCNT), improve the carrier mobility, lead to a simultaneous enhancement of the S and the σ. The maximum S value of MoS2@GO/SWCNT is 42.3 ± 0.2 μV K-1, the σ is 1173.2 ± 45.6 S cm-1, and an optimum power factor (PF) of 208.8 ± 8.5 μW m-1 K-2 at 385 K. For application demonstration, a thermoelectric device is assembled by connecting six pairs of p-type MoS2@GO/SWCNT and n-type copper sheets in series, which demonstrates an open-circuit voltage of 17.4 mV and an output power of 2.1 μW under a temperature difference of 50 K. Therefore, this study enriches the design and synthesis strategy of exfoliated MoS2 and provides a new approach for the development of high-performance SWCNT-based thermoelectric materials, which has important potential applications in the field of wearable electronics.