相关链接
联系方式
  • 通信地址:浙江理工大学,材料与纺织学院,先进纺织材料与制备技术教育部重点实验室
  • 邮编:310018
  • 电话:0571-86843071
  • 传真:0571-86843082
  • Email:342099315@qq.com
当前位置:> 首页 > 论文著作 > 正文
Synergistic enhancement of high-barrier polylactic acid packaging materials by various morphological carbonized cellulose nanocrystals
作者:Bunan Wu , Somia Yassin Hussain Abdalkarim , Zhijiang Li , Weidong Lu , Hou-Yong Yu *
关键字:Carbonized cellulose nanocrystals,Synergistic effects,PLA composites,Crystallization rate,Mechanical property,Green packaging
论文来源:期刊
具体来源:Carbohydrate Polymers
发表时间:2024年

The environmental challenges linked to petroleum-based polymers have accelerated the search for alternative materials like polylactic acid (PLA). Diverse nanofillers, ranging from inorganic to organic and hybrid inorganic/organic varieties, are employed to bolster PLA performance. Yet, non-synergistic nanofillers often underperform due to inadequate dispersion and singular functionality within the PLA matrix. This work introduces carbonized cellulose nanocrystals (GCNC) with rod-like (R-GCNC) and spherical structures (S-GCNC), as synergistic reinforcements for PLA matrix. Unlike traditional nanofillers, the highly graphitized carbon layer on GCNC effectively mitigates CNC agglomeration while preserving cellulose morphology, fostering improved interfacial interactions and hydrogen bonding within PLA matrix. Moreover, GCNC acts as a nucleating agent, boosting the crystallization rate of PLA and enhancing its mechanical properties. Remarkable synergistic reinforcing effects of GCNC on PLA performances were observed. Particularly, the tensile strength of R-GCNC 5 % and S-GCNC 5 % composites surged by 93 % and 76 %, elongation at break increased by 29.4 % and 33.3 %, Young''s modulus rose by 37 % and 18 %, and cold crystallization temperature decreased by 11.5 °C and 12.9 °C. Additionally, the GCNC/PLA composites exhibited exceptional thermal stability, UV resistance, and water vapor permeability reduced by 46 % for R-GCNC, and 35 % for S-GCNC, making them promising for industrial and sustainable packaging.