相关链接
联系方式
  • 通信地址:浙江理工大学,材料与纺织学院,先进纺织材料与制备技术教育部重点实验室
  • 邮编:310018
  • 电话:0571-86843071
  • 传真:0571-86843082
  • Email:342099315@qq.com
当前位置:> 首页 > 论文著作 > 正文
Highly Sensitive Self-Healable Strain Biosensors Based on Robust Transparent Conductive Nanocellulose Nanocomposites: Relationship between Percolated Network and Sensing Mechanism
作者:Lian Han, Haoyu Zhang, Hou-Yong Yu, Zhaofeng Ouyang, Juming Yao, Izabella Krucinska, Daesung Kim, Ka
关键字:Cellulose nanocrystals,strain biosensor,conductive polymer, nanomaterials
论文来源:期刊
发表时间:2021年

The conventional skin sensor detection of human physiological signals can be an effective method for disease diagnosis and health monitoring, but the poor biocompatibility, low sensitivity and complex design largely limit their applications. Developing natural nanofiller-reinforced composites as strain biosensors is an appealing solution to reduce environmental impacts and overcome technical bottleneck. Herein, a versatile nature skin-inspired composite film as flexible strain biosensor was developed based on cellulose nanocrystals-polyaniline (CNC-PANI) composites by utilizing their percolated conductive network in polyvinyl alcohol (PVA) matrix. The composite electronic skin showed robust mechanical strength (50.62 MPa) and high sensitivity (Gauge Factor=11.467) with easy water-induced self-healing abilities. Moreover, we investigated the functioning mechanism of percolated network and the sensory behavior determined by CNC nanocomposite alignment. The percolation threshold of CNC-polyaniline (PANI) was determined at 4.278% and 5% CNC-PANI composite film shows the best overall sensing property. It was also discovered that the sensitivity of this type of conductive-filler electronic skin can be divided into two separate regions at different strain range due to its percolated network. With films prepared by dry casting and dip coating, the alignment of CNC-PANI also contributes to this unique change in electrical property. Generally, our results demonstrated the mechanism and tunability of conductive nanofiller-based composite strain biosensors as a potential alternative to commercial synthetic sensors.