Links
Contact Info.
  • Address:浙江理工大学,材料与纺织学院,先进纺织材料与制备技术教育部重点实验室
  • Zip:310018
  • Tel:0571-86843071
  • Fax:0571-86843082
  • Email:342099315@qq.com
Current Location :> Home > Publications > Text
Enhancingflameretardancyandheat insulationperformancesof polyamide66compositefilmbyaddingCNC/Al2O3nanohybrids
writer:Xue Ma , Xuefei Chen , Xiaohua Wang , Xiaohua Yang , Zengwen Yao , Houyong Yu a ,
keywords:Polyamide 66,CNC/Al2O3 nanohybrids,Mechanical properties,Flame retardancy,Heat insulation
source:期刊
Issue time:2024年
Polyamide 66 (PA66) has garnered significant attention due to its exceptional properties; unfortunately, its flammability is challenging. Adding flame retardants (FRs) is a primary approach to enhance PA66 flame retardancy. This study developed a highly flame-retardant PA66 composite film by adding corn-like functional nanohybrids (CNC/Al2O3). Interestingly, CNC/Al2O3 nanohybrids not only formed hydrogen bond interactions with PA66 but also improved crystallization properties as heterogeneous nucleating agents, resulting in the excellent mechanical properties of PA66 composite film. Remarkably, the incorporation of 3 wt% CNC/Al2O3 nanohybrids into PA66 matrix contributed to increasing the LOI to 28.5 %. The pHRR, THR, and TSR were reduced obviously by 55.7 %, 15.3 %, and 65.2 %, respectively. The excellent flame retardancy of PA66 composite film was attributed to the forming of a compact carbon layer catalyzed by the CNC/Al2O3 nanohybrids. Besides, the homogeneous distribution of CNC/Al2O3 nanohybrids endowed the composite film with excellent heat insulation, and the heat insulation rate was up to 31.9 %. Thus, such PA66 composite films with excellent flame retardancy, heat insulation, and mechanical properties could meet the broader application requirements.