Links
Contact Info.
  • Address:浙江理工大学,材料与纺织学院,先进纺织材料与制备技术教育部重点实验室
  • Zip:310018
  • Tel:0571-86843071
  • Fax:0571-86843082
  • Email:342099315@qq.com
Current Location :> Home > Publications > Text
Nucleation and property enhancement mechanism of robust and high-barrier PLA/ CNFene composites with multi-level reinforcement structure
writer:Ling Yan, Somia Yassin Hussain Abdalkarim, Xuefei Chen, ZhiMing Chen, Weidong Lu, Hou-Yong Yu
keywords:Bio composites, Nano particles, Mechanical properties, Thermal properties
source:期刊
Issue time:2023年

The demand for biopolymer-based green packaging has attracted growing attention because of its outstanding properties and consistency with clean environmental principle, unfortunately, its slow crystallization rate and narrow processing window is challenging. Inspired by combined functions in nanocellulose-based conductive hybrids, this work developed high-performance polylactic acid (PLA) composites using conductive cellulose nanofiber (CNFene). Interestingly, CNFene has multiple functions as highly graphitized carbon and abundant hydroxyl groups, delivering stimulating properties to PLA composites. As nucleating agents, 3wt% CNFene has a carbon layer on the surface combined with a hydrogen bonding network synergistically enhancing the tensile and crystallization properties of PLA-C3, with a tensile strength of ~ 53.7 MPa, crystallinity of ~ 33.9%, and 6.6°C decrease in the cold crystallization temperature. Additionally, the compatibility between CNFene and PLA can form a multi-level "reinforcement" network structure, further improving thermal stability and barrier properties. The resultant PLA-C3 showed higher thermal decomposition onset temperature(T0), wider melt-processing window (197.6°C) and extremely lower overall migration levels in ethanol (68.6 μg/kg) and isooctane (16.3 μg/kg), due to that improved interaction between CNFene and PLA positively affects crystallization ability and kinetic/mechanism of PLA to meet the requirements of industrial and green biopackaging applications.