Links
Contact Info.
  • Address:浙江理工大学,材料与纺织学院,先进纺织材料与制备技术教育部重点实验室
  • Zip:310018
  • Tel:0571-86843071
  • Fax:0571-86843082
  • Email:342099315@qq.com
Current Location :> Home > Publications > Text
Robust Natural Biomaterial Based Flexible Artificial Skin Sensor with High Transparency and Multiple Signals Capture
writer:MaihaoZhu,Hou-YongYu,FengTang,YingzhanLi,YannanLiu,Ju-mingYao
keywords:Artificial skin,Strain sensing,Silk fibroin,Cellulose nanocrystal,Signals capture
source:期刊
specific source:Chemical Engineering Journal
Issue time:2020年
The human skin tissues were full of elastic collagen networks to keep water, mechanical strength and capture tactile signals. Learn from this, it is highly desired to use natural biomaterials especially protein host materials to prepare artificial skin with excellent mechanical property, highly transparent and multi-sensing. In this work, we first demonstrate a natural silk fibroin (SF) membrane based artificial skin enhanced by cellulose nanocrystals (CNCs). CNCs here acted as cross-linked sites to contribute to dynamic network formation in SF membrane through intermolecular hydrogen bonding interaction. The inner structure, transparency, thermal stability, mechanical properties and possible sensing mechanism of SF/CNCs membranes were carefully investigated as a function of varied CNCs contents. The results indicated that the optimized Young''s modulus of SF/CNCs membrane with 15wt% CNCs greatly increased to 960 MPa (withstanding 10,000 times its own weight), while the transparency still reached up to 90%. More importantly, the SF/CNCs membranes showed excellent multiple sensing of small tactile signals and low concentration (0.2 mg/mL) of ethanol gas, resulting from the dynamic reversible network between CNCs and SF molecular chains. Such versatile and robust SF/CNCs membranes will be very potential in artificial skin used in special place such as chemical plants.